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Scouring of granular beds by jet-driven axisymmetric turbulent cauldrons
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We study a sustained, jet-driven, axisymmetric turbulent cauldron that scours a pothole in a
cohesionless granular bed. We focus on the energetics of the turbulent cauldron and use dimensional
analysis and similarity methods to derive �up to a multiplicative constant� a formula for the
equilibrium depth of the pothole. To that end, we assume that the power of the jet is stationary and
that under equilibrium conditions no air or granular material from the bed is entrained in the
cauldron. The resulting formula contains a single similarity exponent, which we show can be
determined via the phenomenological theory of turbulence. Our method of analysis may prove
useful in developing a theoretical understanding of mine burial, bridge pier-induced erosion, and
other applications in which a localized turbulent flow interacts with a granular bed.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2335887�
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Numerous applications in hydrology, geomorphology,
and hydraulics involve a water jet that plunges into a pool of
water with a cohesionless granular bed for a bottom.1 Driven
by the jet, a turbulent cauldron develops in the pool and
starts to scour a pothole, which deepens until a state of dy-
namic equilibrium is attained between the granular bed and
the turbulent cauldron �Fig. 1�. For example, when a small-
head dam is overtopped by a high flood, a pothole is scoured
in the granular bed behind the dam. This pothole confines the
turbulent energy, which would otherwise migrate down-
stream and cause environmental damage there;1 nevertheless,
if the pothole is too deep, it can compromise the stability of
the dam. In a recent paper,2 we derived a formula for the
depth of the pothole as a function of the power of the jet and
the properties of the granular bed. Because most applications
correspond to the cylindrical case, where the turbulent caul-
dron is roughly cylindrical �Fig. 1�, in Ref. 2 we derived our
formula for the cylindrical case. Yet other less frequent ap-
plications correspond to the axisymmetric case, in which the
turbulent cauldron is roughly spherical �Fig. 1�. For example,
when the levee of a river is breached over a narrow portion
of its length, the ensuing jet scours a bowl-shaped pothole in
the backswamp of the river—a crevasse lake. There has been
a want of research into the axisymmetric case, for which no
theoretical formula appears to be available. In this paper, we
use dimensional analysis, similarity methods,3 and the phe-
nomenological theory of turbulence4,5 to derive a theoretical
formula for the axisymmetric case. Interestingly, our results
indicate that in most experiments purported to represent the
cylindrical case,6 the actual experimental conditions must
have been intermediate between the cylindrical case and the
axisymmetric case.

We start by ascertaining to what extent a theoretical for-
mula may be predicated on dimensional analysis and simi-
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larity methods. Our first step is to choose a suitable set of
variables. After evaluating several alternatives, we decide on
the following set of six variables: R, �, g, �s, d, and P. Here
R is the size of the turbulent cauldron �Fig. 1�, � is the
density of pure water �we assume that no air or grains from
the granular bed are entrained in the cauldron7�, g is the
gravitational acceleration, �s and d are the density and the
diameter of the grains of the granular bed, respectively, and
P is the power of the jet, P=q�gh, where q is the volume
flux of the jet. Note that P is the stationary power that sus-
tains the turbulent cauldron; by choosing P as a variable, we
place the focus of our analysis on the energetics of the tur-
bulent cauldron. Also note that in our set of variables we do
not include the viscosity �or the Reynolds number Re� be-
cause in all applications of interest the bed is “hydraulically
rough” �i.e., Re is sufficiently high that d��, where � is
the Kolmogorov length scale�. The dimensional equations
�P�= ����g�3/2�R�7/2, ��s�= ���, and �d�= �R� show that the di-
mensions of three of the variables �P, �s, and d� can be
expressed as products of powers of the dimensions of the
remaining variables; it follows from Buckingham’s �
theorem3 that we can reduce the functional relation among P,
R, �, g, �s, and d to an equivalent functional relation among
three dimensionless variables. With the sensible choice of
dimensionless variables �1� P /�g3/2R7/2, �2��s /� �the
relative density of the bed�, and �3�d /R �the relative
roughness of the bed�, we may write �1=F��2 ,�3� or,
equivalently,

P = �g3/2R7/2F� d

R
,
�s

�
� , �1�

where F is a dimensionless function of the relative density
and of the relative roughness of the bed. To make further
progress, we note that in applications d /R�1, and we seek
to formulate an asymptotic similarity law for d /R→0. There

3
 84are two possible similarities: complete and incomplete. In 85
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the case of complete similarity in d /R, F�d /R ,�s /�� be-
comes independent of d /R as d /R→0. If this were the case,
R would be independent of d for d /R�1, which would be
incompatible with the empirical evidence that the roughness
of a wall does affect a turbulent flow over the wall. On the
other hand, in the case of incomplete similarity in d /R, �1�
admits the following power-law asymptotic expression:3

F�d /R ,�s /��= �d /R��G��s /��+o��d /R���, where � is a simi-
larity exponent, which cannot be determined by dimensional
analysis, and G is a dimensionless function of the relative
density of the bed, �s /�. By substituting the leading term of
this asymptotic expression in �1� and rearranging, we obtain
the following formula for the depth of the pothole:

� = KqeqhehgegdedH��s

�
� − D , �2�

where eq=eh=2/ �7−2��, eg=−1/ �7−2��, ed=−2� / �7−2��,
and we have defined H��s /���1/K�G��s /���2/�7−2��, where
K is a dimensionless constant. The theoretical formula of �2�
contains numerous exponents, but these exponents turn out
to be functions of a single free parameter, the similarity ex-
ponent. Thus the exponents of �2� could be estimated via the
empirical determination of the similarity exponent. Never-
theless, we show presently that �2� as well as the function
H��s /�� and the value of the similarity exponent can be de-
rived in a completely independent way by using the phenom-
enological theory of turbulence.

The phenomenological theory was originally derived for
isotropic and homogeneous flows,4 but recent research5 indi-
cates that the theory applies as well to flows that are neither
isotropic nor homogeneous, as is the case of the flow in the
turbulent cauldron. The theory is based on two tenets pertain-
ing to the steady production of turbulent �kinetic� energy: �i�
The production occurs at the length scale of the largest ed-
dies in the flow, and �ii� the rate of production is independent
of the viscosity. From these tenets, it is possible to obtain a
scaling expression for the rate of production of turbulent en-
ergy per unit mass of cauldron �which we denote by �� in
terms of the velocity of the largest eddies �which we denote
by V� and of the size of the largest eddies �which scales with
R�.8 The largest eddies possess a kinetic energy per unit mass

2

FIG. 1. Geometry and notation. A jet of stationary volume flux q plunges
from a height h �the head� into a pool of uniform depth D. The jet sustains
a turbulent cauldron, which in turn scours a pothole of depth � in a granular
bed composed of cohesionless grains of diameter d. The largest eddies in the
cauldron have a velocity V and a size that scales with the size of the caul-
dron, R�D+�. In the cylindrical case, the jet and the pothole are cylinders
with axes perpendicular to the plane of the figure, and q has units of volume
per unit time and per unit length along the axis. In the axisymmetric case,
the jet and the pothole share a vertical axis of rotational symmetry, and q has
units of volume per unit time.
PY 025608PHF  

e�V and a turnover time t�R /V, where ‘�’ means “scales
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with.” These eddies persist for a time t, whereupon they split
into second-generation eddies �of size �R /2�, thereby trans-
ferring their energy to smaller length scales. For the steady
state to be preserved, a new set of large eddies must therefore
be produced at time intervals t, implying that �=e / t
�V3 /R8. Now the second-generation eddies in turn split into
third-generation eddies �of size �R /4�, thereby transferring
the kinetic energy to still smaller length scales, and so on
down to the Kolmogorov length scale, �=	3/4�−1/4 �where 	
is the kinematic viscosity�, at which length scale the energy
can be dissipated by the viscosity.4 Thus, for a generation of
eddies of size l and velocity ul, it must be that ��ul

3 / l,
which together with ��V3 /R leads to the Kolmogorov
scaling,4 ul�V�l /R�1/3 �valid for l /��1�. We recall these
results later on.

Now we consider the energetics of the turbulent caul-
dron and seek to obtain a scaling expression for V, the ve-
locity of the largest eddies. The production of turbulent en-
ergy is driven by the jet, whose power is P=q�gh. Therefore,
P must equal the rate of production of turbulent energy in the
cauldron �note that P is independent of the viscosity, in ac-
cord with the second tenet of the phenomenological theory
stated above�, and we can write P=�M, where � is the tur-
bulent power per unit mass, and M ��R3 is the mass of the
cauldron. It follows that ��qgh /R3 and, from a comparison
with ��V3 /R, that

V � 	qg
h

R2
1/3

, �3�

which is the sought expression for the velocity of the largest
eddies in the cauldron.

Next we consider the surface of the pothole and seek to
obtain a scaling expression for the shear stress exerted by the
flow on that surface.9 Let us call S a wetted surface tangent
to the peaks of the grains at the surface of the pothole �Fig.
2�. The shear stress acting on S is the Reynolds stress,

=� �vnvt�, where vn and vt are the fluctuating velocities nor-
mal and tangent to S, respectively, and an overbar denotes
time average.4,8 We study vn first, and start by making a
crucial observation: when the relative roughness is small
�d /R�1�, eddies of sizes larger than, say, 2d, can make only
a negligible contribution to vn �this is entirely a matter of
geometry; see Fig. 2�. On the other hand, eddies smaller than
d fit in the coves between successive grains on the bed, so

FIG. 2. Three grains of diameter d lying at the surface of the pothole. The
dashed line is the trace of a wetted surface S tangent to the peaks of the
grains at the surface of the pothole. The size of the coves between succes-
sive grains on the bed scales with d.
83that these eddies can make a sizable contribution to vn. How- 168
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ever, when these eddies are smaller than, say, d /2, their ve-
locities are negligible compared with the velocity of the
eddies of size d. �Recall the Kolmogorov scaling,
ul�V�l /R�1/3, which is valid for l /��1; it follows that the
smaller the size of an eddy, l, the smaller its velocity, ul.�
Thus, assuming that d /��1, vn is dominated by ud, the ve-
locity of the eddies of size d. In other words, vn�ud. Now
we turn to vt. Eddies of all sizes can provide a velocity
tangent to S. Thus, vt is dominated by V, the velocity of the
largest eddies, and vt�V. We conclude that 
=� �vnvt �
��udV. Substituting �3� and ud�V�d /R�1/3 in 
��udV, we
obtain10


 � �
�qhg�2/3d1/3

R5/3 , �4�

which is valid for ��d�R. To discuss Eq. �4�, it is conve-
nient to rewrite it in terms of the power of the jet, P=q�gh,
with the result 
� P2/3��d�1/3 /R5/3. Now consider the instant
when a jet of power P plunges into the pool of water of
uniform depth D. Then, the pothole starts to form, and as the
depth � of the pothole increases, the size R=�+D of the
cauldron increases accordingly, leading to a decrease in 
.
Eventually, 
 decreases to a critical value 
c, and the scour-
ing ceases. Thus the condition of equilibrium between the
turbulent cauldron and the granular bed is 
=
c.

7

To obtain a scaling expression for the critical stress 
c,
we follow Shields11 in recognizing that the grains at the sur-
face of a granular bed are subjected to a Reynolds stress

��udV �exerted by the turbulent flow�, a gravitational
stress 
g���s−��gd, and a viscous stress 
	��	V /d. Then,

TABLE II. Sets of exponents of �5� empirically deter
all the empirical exponents correspond to the cylindri
sets of theoretical exponents determined here for t
cylindrical case.

Researcher�s� and year eq

Schoklitsch 1932 0.57

Veronese 1937 0.54

Eggenberger and Müller 1944 0.6

Hartung 1959 0.64

Franke 1960 0.67

Kotoulas 1967 0.7

Chee and Kung 1974 0.6

Machado 1980 0.5

Bormann and Julien 1991 0.6

Theory—cylindrical 0.66

Theory—axisymmetric 0.4

TABLE I. Sets of exponents of �5� empirically dete
from Refs. 12 and 13. Also shown are the sets of the
case.

Researcher�s� and year eq

Aderibigbe and Rajaratnam 1996 0.5

Abt et al. 1984 0.345

Theory 0.4
PY 025608PHF  
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if the equilibrium condition is satisfied, we can perform a
straightforward dimensional analysis using three variables,

=
c, 
g, and 
	. The result is 
c�
gI�Red�, where I is a
dimensionless function of a Reynolds number Red�
 /
	

=udd /	. By recalling that ��ud
3 /d, �=	3/4�−1/4, and d /�

�1, we conclude that Red��d /��4/3�1, and seek to formu-
late a similarity law for Red→�. If we assume complete
similarity in Red, then I�Red� tends to a constant as
Red→� �in accord with experimental results on incipient
motion of granular beds11�, and therefore 
c���s−��gd,
which is the sought expression for the critical stress.

Now we are ready to impose the equilibrium condition.
By substituting �4� and 
c���s−��gd into 
=
c, rearranging,
and introducing K, a dimensionless constant of proportional-
ity, we obtain the following formula for �:

� = Kq2/5h2/5g−1/5d−2/5	 �

�s − �

3/5

− D . �5�

A comparison of �5� with �2� indicates that eq=eh=2/5,
eg=−1/5, and ed=−2/5, in accord with a similarity exponent
of value �=1. Thus, the theory gives values of eq, eh, eg, and
ed that relate to one another in the form necessitated by the
independent analysis that yielded �2�. Further, a comparison
of �5� with �2� indicates that H��s /��=1/ ��s /�−1�e� with
e�=3/5.

In Table I we compare our theoretical exponents with the
empirical exponents determined by two groups of research-
ers. The empirical exponents of Table I were determined by
fitting experimental data. Unfortunately, the data were not

d �or set to zero� by different researchers; nominally,
se. Adapted from Refs. 6 and 14. Also shown are the
isymmetric case and in a previous paper2 for the

eh eg ed e�

.2 0 −0.32 0

225 0 −0.42 0

.5 −0.3 −0.4 0.44

.36 0 −0.32 0

.5 0 −0.5 0

.35 −0.35 −0.4 0

.2 0 −0.1 0

145 0 −0.0645 0

.5 −0.3 −0.4 0.8

.66 −0.33 −0.66 1

.4 −0.2 −0.4 0.6

d �or set to zero� by different researchers. Adapted
cal exponents determined here for the axisymmetric

eh eg ed e�

0.25 −0.25 −0.5 0.5

0.1425 −0.17 0 0

0.4 −0.2 −0.4 0.6
mine
cal ca
he ax

0

0.

0

0

0

0

0

0.3

0

0

0

rmine
oreti
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fitted to a formula of the form �2�, but to formulas similar to
�2�. �For example, the right-hand side of the formula used by
Aderibigbe and Rajaratnam was not −D, as in �2�, but
−0.09D.� Even though this fact must have affected the result-
ing empirical exponents, these exponents compare reason-
ably well with the theoretical exponents obtained here.

Note that the formula �5� holds for the axisymmetric
case, but it is formally identical with the formula for the
cylindrical case that we derived in a previous paper.2 The
only difference is that for the cylindrical case the theoretical
exponents are eq=eh=2/3, eg=−1/3, ed=−2/3, and e�=1.
We endeavor presently to show that our results on the axi-
symmetric case have a direct bearing on the interpretation of
the experimental data available for the cylindrical case.

In Table II, we compare the theoretical exponents for
both the axisymmetric case and the cylindrical case with the
empirical exponents determined by various researchers.
Nominally, the empirical exponents of Table II correspond to
the cylindrical case �they were obtained by fitting experi-
mental data on the cylindrical case�. As might have been
surmised from the diversity of experimental setups and the
vagaries of measurement, and as Table II confirms, some-
times different researchers obtained widely disparate values
of a given exponent. Yet, for the most part, the empirical
values of a given exponent fall between the theoretical value
of that exponent for the cylindrical case and the theoretical
value of that exponent for the axisymmetric case. It follows
that the data used to determine the empirical exponents of
Table II might not correspond to the cylindrical case, as pur-
ported, but rather to cases intermediate between the cylindri-
cal case and the axisymmetric case. In fact, in none of the
experiments that yielded these data was the jet uniformly
powerful along the direction normal to the plane of Fig. 1.
Instead, the jet was confined between lateral walls and must
have been weaker close to those walls than in between. Such
a jet must have led to a pothole of variable depth: shallower
close to the walls, deeper away from them—that is to say, a
pothole neither cylindrical nor axisymmetric, but intermedi-
ate between the two.

To summarize: on the basis of turbulence theory, we
have derived a formula for the depth of a pothole in equilib-
rium with a jet-driven axisymmetric turbulent cauldron
where the power of the jet is stationary and no air or granular
material from the bed is entrained in the cauldron. The for-
mula represents the power-law asymptotic behavior of a hy-
draulically rough flow of incomplete similarity in the relative
roughness of the cohesionless granular bed. The attendant
PY 025608PHF  
025608PHF  

theoretical exponents compare reasonably well with the few
empirical exponents available for the axisymmetric case. Our
results indicate that despite current practice, theory may be
advantageously used instead of empirical formulas in the
analysis and design of overflowing gates, weirs, dams, and
natural obstructions.

We thank J. W. Phillips and P. Chakraborty for kindly
reading our manuscript and suggesting improvements.
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