${ }_{1}$ Scouring of granular beds by jet-driven axisymmetric turbulent cauldrons

\author{
$2 \quad$ Fabián A. Bombardellia)
 3 Department of Civil and Environmental Engineering, University of California, Davis, California 95616
 4 G. Gioia
 5 Department of Theoretical and Applied Mechanics, University of Illinois, Urbana, Illinois 61801
 $6 \quad$ (Received 15 February 2006; accepted 3 July 2006)
 7 We study a sustained, jet-driven, axisymmetric turbulent cauldron that scours a pothole in a 8 cohesionless granular bed. We focus on the energetics of the turbulent cauldron and use dimensional 9 analysis and similarity methods to derive (up to a multiplicative constant) a formula for the

Abstract

equilibrium depth of the pothole. To that end, we assume that the power of the jet is stationary and

 that under equilibrium conditions no air or granular material from the bed is entrained in the cauldron. The resulting formula contains a single similarity exponent, which we show can be determined via the phenomenological theory of turbulence. Our method of analysis may prove useful in developing a theoretical understanding of mine burial, bridge pier-induced erosion, and other applications in which a localized turbulent flow interacts with a granular bed.
 © 2006 American Institute of Physics. [DOI: 10.1063/1.2335887]}

18 Numerous applications in hydrology, geomorphology, 19 and hydraulics involve a water jet that plunges into a pool of 20 water with a cohesionless granular bed for a bottom. ${ }^{1}$ Driven 21 by the jet, a turbulent cauldron develops in the pool and 22 starts to scour a pothole, which deepens until a state of dy23 namic equilibrium is attained between the granular bed and 24 the turbulent cauldron (Fig. 1). For example, when a small25 head dam is overtopped by a high flood, a pothole is scoured 26 in the granular bed behind the dam. This pothole confines the 27 turbulent energy, which would otherwise migrate down28 stream and cause environmental damage there; ${ }^{1}$ nevertheless, 29 if the pothole is too deep, it can compromise the stability of 30 the dam. In a recent paper, ${ }^{2}$ we derived a formula for the 31 depth of the pothole as a function of the power of the jet and 32 the properties of the granular bed. Because most applications 33 correspond to the cylindrical case, where the turbulent caul34 dron is roughly cylindrical (Fig. 1), in Ref. 2 we derived our 35 formula for the cylindrical case. Yet other less frequent ap36 plications correspond to the axisymmetric case, in which the 37 turbulent cauldron is roughly spherical (Fig. 1). For example, 38 when the levee of a river is breached over a narrow portion 39 of its length, the ensuing jet scours a bowl-shaped pothole in 40 the backswamp of the river-a crevasse lake. There has been 41 a want of research into the axisymmetric case, for which no 42 theoretical formula appears to be available. In this paper, we 43 use dimensional analysis, similarity methods, ${ }^{3}$ and the phe44 nomenological theory of turbulence ${ }^{4,5}$ to derive a theoretical 45 formula for the axisymmetric case. Interestingly, our results 46 indicate that in most experiments purported to represent the 47 cylindrical case, ${ }^{6}$ the actual experimental conditions must 48 have been intermediate between the cylindrical case and the 49 axisymmetric case.
50 We start by ascertaining to what extent a theoretical for51 mula may be predicated on dimensional analysis and simi-

[^0]larity methods. Our first step is to choose a suitable set of 52 variables. After evaluating several alternatives, we decide on 53 the following set of six variables: R, ρ, g, ρ_{s}, d, and P. Here 54 R is the size of the turbulent cauldron (Fig. 1), ρ is the 55 density of pure water (we assume that no air or grains from 56 the granular bed are entrained in the cauldron ${ }^{7}$), g is the 57 gravitational acceleration, ρ_{s} and d are the density and the 58 diameter of the grains of the granular bed, respectively, and 59 P is the power of the jet, $P=q \rho g h$, where q is the volume 60 flux of the jet. Note that P is the stationary power that sus- 61 tains the turbulent cauldron; by choosing P as a variable, we 62 place the focus of our analysis on the energetics of the tur- 63 bulent cauldron. Also note that in our set of variables we do 64 not include the viscosity (or the Reynolds number Re) be- 65 cause in all applications of interest the bed is "hydraulically 66 rough" (i.e., Re is sufficiently high that $d \gg \eta$, where η is 67 the Kolmogorov length scale). The dimensional equations 68 $[P]=[\rho][g]^{3 / 2}[R]^{7 / 2},\left[\rho_{s}\right]=[\rho]$, and $[d]=[R]$ show that the di- 69 mensions of three of the variables $\left(P, \rho_{s}\right.$, and d) can be 70 expressed as products of powers of the dimensions of the 71 remaining variables; it follows from Buckingham's Π_{72} theorem ${ }^{3}$ that we can reduce the functional relation among $P, 73$ R, ρ, g, ρ_{s}, and d to an equivalent functional relation among 74 three dimensionless variables. With the sensible choice of 75 dimensionless variables $\Pi_{1} \equiv P / \rho g^{3 / 2} R^{7 / 2}, ~ \Pi_{2} \equiv \rho_{s} / \rho$ (the 76 relative density of the bed), and $\Pi_{3} \equiv d / R$ (the relative 77 roughness of the bed), we may write $\Pi_{1}=\mathcal{F}\left[\Pi_{2}, \Pi_{3}\right]$ or, 78 equivalently, 79
\[

$$
\begin{equation*}
P=\rho g^{3 / 2} R^{7 / 2} \mathcal{F}\left[\frac{d}{R}, \frac{\rho_{s}}{\rho}\right], \tag{1}
\end{equation*}
$$

\]

where \mathcal{F} is a dimensionless function of the relative density 81 and of the relative roughness of the bed. To make further 82 progress, we note that in applications $d / R \ll 1$, and we seek 83 to formulate an asymptotic similarity law for $d / R \rightarrow 0$. There 84 are two possible similarities: complete and incomplete. ${ }^{3}$ In 85

FIG. 1. Geometry and notation. A jet of stationary volume flux q plunges from a height h (the head) into a pool of uniform depth D. The jet sustains a turbulent cauldron, which in turn scours a pothole of depth Δ in a granular bed composed of cohesionless grains of diameter d. The largest eddies in the cauldron have a velocity V and a size that scales with the size of the cauldron, $R \equiv D+\Delta$. In the cylindrical case, the jet and the pothole are cylinders with axes perpendicular to the plane of the figure, and q has units of volume per unit time and per unit length along the axis. In the axisymmetric case, the jet and the pothole share a vertical axis of rotational symmetry, and q has units of volume per unit time.

86 the case of complete similarity in $d / R, \mathcal{F}\left[d / R, \rho_{s} / \rho\right]$ be87 comes independent of d / R as $d / R \rightarrow 0$. If this were the case, $88 R$ would be independent of d for $d / R \ll 1$, which would be 89 incompatible with the empirical evidence that the roughness 90 of a wall does affect a turbulent flow over the wall. On the 91 other hand, in the case of incomplete similarity in d / R, (1) 92 admits the following power-law asymptotic expression: ${ }^{3}$ $93 \mathcal{F}\left[d / R, \rho_{s} / \rho\right]=(d / R)^{\alpha} \mathcal{G}\left[\rho_{s} / \rho\right]+o\left[(d / R)^{\alpha}\right]$, where α is a simi94 larity exponent, which cannot be determined by dimensional 95 analysis, and \mathcal{G} is a dimensionless function of the relative 96 density of the bed, ρ_{s} / ρ. By substituting the leading term of 97 this asymptotic expression in (1) and rearranging, we obtain 98 the following formula for the depth of the pothole:

99

$$
\begin{equation*}
\Delta=K q^{e}{ }_{q} h^{e_{h}} g^{e_{s}} d^{e} d \mathcal{H}\left[\frac{\rho_{s}}{\rho}\right]-D \tag{2}
\end{equation*}
$$

100 where $e_{q}=e_{h}=2 /(7-2 \alpha), e_{g}=-1 /(7-2 \alpha), e_{d}=-2 \alpha /(7-2 \alpha)$, 101 and we have defined $\mathcal{H}\left[\rho_{s} / \rho\right] \equiv 1 / K\left(\mathcal{G}\left[\rho_{s} / \rho\right]\right)^{2 /(7-2 \alpha)}$, where $102 K$ is a dimensionless constant. The theoretical formula of (2) 103 contains numerous exponents, but these exponents turn out 104 to be functions of a single free parameter, the similarity ex105 ponent. Thus the exponents of (2) could be estimated via the 106 empirical determination of the similarity exponent. Never107 theless, we show presently that (2) as well as the function $108 \mathcal{H}\left[\rho_{s} / \rho\right]$ and the value of the similarity exponent can be de109 rived in a completely independent way by using the phenom110 enological theory of turbulence.
111 The phenomenological theory was originally derived for 112 isotropic and homogeneous flows, ${ }^{4}$ but recent research ${ }^{5}$ indi113 cates that the theory applies as well to flows that are neither 114 isotropic nor homogeneous, as is the case of the flow in the 115 turbulent cauldron. The theory is based on two tenets pertain116 ing to the steady production of turbulent (kinetic) energy: (i) 117 The production occurs at the length scale of the largest ed118 dies in the flow, and (ii) the rate of production is independent 119 of the viscosity. From these tenets, it is possible to obtain a 120 scaling expression for the rate of production of turbulent en121 ergy per unit mass of cauldron (which we denote by ε) in 122 terms of the velocity of the largest eddies (which we denote 123 by V) and of the size of the largest eddies (which scales with $124 R) .{ }^{8}$ The largest eddies possess a kinetic energy per unit mass $125 e \sim V^{2}$ and a turnover time $t \sim R / V$, where ' \sim ' means "scales

FIG. 2. Three grains of diameter d lying at the surface of the pothole. The dashed line is the trace of a wetted surface S tangent to the peaks of the grains at the surface of the pothole. The size of the coves between successive grains on the bed scales with d.
with." These eddies persist for a time t, whereupon they split 126 into second-generation eddies (of size $\sim R / 2$), thereby trans- 127 ferring their energy to smaller length scales. For the steady 128 state to be preserved, a new set of large eddies must therefore 129 be produced at time intervals t, implying that $\varepsilon=e / t 130$ $\sim V^{3} / R^{8}$. Now the second-generation eddies in turn split into 131 third-generation eddies (of size $\sim R / 4$), thereby transferring 132 the kinetic energy to still smaller length scales, and so on 133 down to the Kolmogorov length scale, $\eta=\nu^{3 / 4} \varepsilon^{-1 / 4}$ (where $\nu 134$ is the kinematic viscosity), at which length scale the energy 135 can be dissipated by the viscosity. ${ }^{4}$ Thus, for a generation of 136 eddies of size l and velocity u_{l}, it must be that $\varepsilon \sim u_{l}^{3} / l$, 137 which together with $\varepsilon \sim V^{3} / R$ leads to the Kolmogorov 138 scaling, ${ }^{4} u_{l} \sim V(l / R)^{1 / 3}$ (valid for $\left.l / \eta \gg 1\right)$. We recall these 139 results later on. 140
Now we consider the energetics of the turbulent caul- 141 dron and seek to obtain a scaling expression for V, the ve- 142 locity of the largest eddies. The production of turbulent en- 143 ergy is driven by the jet, whose power is $P=q \rho g h$. Therefore, 144 P must equal the rate of production of turbulent energy in the 145 cauldron (note that P is independent of the viscosity, in ac- 146 cord with the second tenet of the phenomenological theory 147 stated above), and we can write $P=\varepsilon M$, where ε is the tur- 148 bulent power per unit mass, and $M \sim \rho R^{3}$ is the mass of the 149 cauldron. It follows that $\varepsilon \sim q g h / R^{3}$ and, from a comparison 150 with $\varepsilon \sim V^{3} / R$, that 151

$$
\begin{equation*}
V \sim\left(q g \frac{h}{R^{2}}\right)^{1 / 3} \tag{3}
\end{equation*}
$$

which is the sought expression for the velocity of the largest 153 eddies in the cauldron. 154
Next we consider the surface of the pothole and seek to 155 obtain a scaling expression for the shear stress exerted by the 156 flow on that surface. ${ }^{9}$ Let us call S a wetted surface tangent 157 to the peaks of the grains at the surface of the pothole (Fig. 158 2). The shear stress acting on S is the Reynolds stress, 159 $\tau=\rho\left|\bar{v}_{n} v_{t}\right|$, where v_{n} and v_{t} are the fluctuating velocities nor- 160 mal and tangent to S, respectively, and an overbar denotes 161 time average. ${ }^{4,8}$ We study v_{n} first, and start by making a 162 crucial observation: when the relative roughness is small 163 $(d / R \ll 1)$, eddies of sizes larger than, say, $2 d$, can make only 164 a negligible contribution to v_{n} (this is entirely a matter of 165 geometry; see Fig. 2). On the other hand, eddies smaller than 166 d fit in the coves between successive grains on the bed, so 167 that these eddies can make a sizable contribution to v_{n}. How- 168

TABLE I. Sets of exponents of (5) empirically determined (or set to zero) by different researchers. Adapted from Refs. 12 and 13. Also shown are the sets of theoretical exponents determined here for the axisymmetric case.

Researcher(s) and year	e_{q}	e_{h}	e_{g}	e_{d}	e_{ρ}
Aderibigbe and Rajaratnam 1996	0.5	0.25	-0.25	-0.5	0.5
Abt et al. 1984	0.345	0.1425	-0.17	0	0
Theory	0.4	0.4	-0.2	-0.4	0.6

169 ever, when these eddies are smaller than, say, $d / 2$, their ve170 locities are negligible compared with the velocity of the 171 eddies of size d. [Recall the Kolmogorov scaling, $172 u_{l} \sim V(l / R)^{1 / 3}$, which is valid for $l / \eta \gg 1$; it follows that the 173 smaller the size of an eddy, l, the smaller its velocity, u_{l}.] 174 Thus, assuming that $d / \eta \gg 1, v_{n}$ is dominated by u_{d}, the ve175 locity of the eddies of size d. In other words, $v_{n} \sim u_{d}$. Now 176 we turn to v_{t}. Eddies of all sizes can provide a velocity 177 tangent to S. Thus, v_{t} is dominated by V, the velocity of the 178 largest eddies, and $v_{t} \sim V$. We conclude that $\tau=\rho\left|\overline{v_{n} v_{t}}\right|$ $179 \sim \rho u_{d} V$. Substituting (3) and $u_{d} \sim V(d / R)^{1 / 3}$ in $\tau \sim \rho u_{d} V$, we 180 obtain 10
$181 \tau \sim \rho \frac{(q h g)^{2 / 3} d^{1 / 3}}{R^{5 / 3}}$,
182 which is valid for $\eta \ll d \ll R$. To discuss Eq. (4), it is conve183 nient to rewrite it in terms of the power of the jet, $P=q \rho g h$, 184 with the result $\tau \sim P^{2 / 3}(\rho d)^{1 / 3} / R^{5 / 3}$. Now consider the instant 185 when a jet of power P plunges into the pool of water of 186 uniform depth D. Then, the pothole starts to form, and as the 187 depth Δ of the pothole increases, the size $R=\Delta+D$ of the 188 cauldron increases accordingly, leading to a decrease in τ. 189 Eventually, τ decreases to a critical value τ_{c}, and the scour190 ing ceases. Thus the condition of equilibrium between the 191 turbulent cauldron and the granular bed is $\tau=\tau_{c}{ }^{7}$
192 To obtain a scaling expression for the critical stress τ_{c}, 193 we follow Shields ${ }^{11}$ in recognizing that the grains at the sur194 face of a granular bed are subjected to a Reynolds stress $195 \tau \sim \rho u_{d} V$ (exerted by the turbulent flow), a gravitational 196 stress $\tau_{g} \sim\left(\rho_{s}-\rho\right) g d$, and a viscous stress $\tau_{\nu} \sim \rho \nu V / d$. Then,
if the equilibrium condition is satisfied, we can perform a 197 straightforward dimensional analysis using three variables, 198 $\tau=\tau_{c}, \tau_{g}$, and τ_{ν}. The result is $\tau_{c} \sim \tau_{g} \mathcal{I}\left[\operatorname{Re}_{d}\right]$, where \mathcal{I} is a 199 dimensionless function of a Reynolds number $\operatorname{Re}_{d} \equiv \tau / \tau_{\nu} 200$ $=u_{d} d / \nu$. By recalling that $\varepsilon \sim u_{d}^{3} / d, \eta=\nu^{3 / 4} \varepsilon^{-1 / 4}$, and $d / \eta 201$ $\gg 1$, we conclude that $\mathrm{Re}_{d} \sim(d / \eta)^{4 / 3} \gg 1$, and seek to formu- 202 late a similarity law for $\mathrm{Re}_{d} \rightarrow \infty$. If we assume complete 203 similarity in Re_{d}, then $\mathcal{I}\left[\mathrm{Re}_{d}\right]$ tends to a constant as 204 $\mathrm{Re}_{d} \rightarrow \infty$ (in accord with experimental results on incipient 205 motion of granular beds ${ }^{11}$), and therefore $\tau_{c} \sim\left(\rho_{s}-\rho\right) g d, 206$ which is the sought expression for the critical stress. 207

Now we are ready to impose the equilibrium condition. 208 By substituting (4) and $\tau_{c} \sim\left(\rho_{s}-\rho\right) g d$ into $\tau=\tau_{c}$, rearranging, 209 and introducing K, a dimensionless constant of proportional- 210 ity, we obtain the following formula for Δ :

$$
\begin{equation*}
\Delta=K q^{2 / 5} h^{2 / 5} g^{-1 / 5} d^{-2 / 5}\left(\frac{\rho}{\rho_{s}-\rho}\right)^{3 / 5}-D \tag{5}
\end{equation*}
$$

A comparison of (5) with (2) indicates that $e_{q}=e_{h}=2 / 5,213$ $e_{g}=-1 / 5$, and $e_{d}=-2 / 5$, in accord with a similarity exponent 214 of value $\alpha=1$. Thus, the theory gives values of e_{q}, e_{h}, e_{g}, and 215 e_{d} that relate to one another in the form necessitated by the 216 independent analysis that yielded (2). Further, a comparison 217 of (5) with (2) indicates that $\mathcal{H}\left[\rho_{s} / \rho\right]=1 /\left(\rho_{s} / \rho-1\right)^{e_{\rho}}$ with 218 $e_{\rho}=3 / 5$.

219
In Table I we compare our theoretical exponents with the 220 empirical exponents determined by two groups of research- 221 ers. The empirical exponents of Table I were determined by 222 fitting experimental data. Unfortunately, the data were not 223

TABLE II. Sets of exponents of (5) empirically determined (or set to zero) by different researchers; nominally, all the empirical exponents correspond to the cylindrical case. Adapted from Refs. 6 and 14. Also shown are the sets of theoretical exponents determined here for the axisymmetric case and in a previous paper ${ }^{2}$ for the cylindrical case.

Researcher(s) and year	e_{q}	e_{h}	e_{g}	e_{d}	e_{ρ}
Schoklitsch 1932	0.57	0.2	0	-0.32	0
Veronese 1937	0.54	0.225	0	-0.42	0
Eggenberger and Müller 1944	0.6	0.5	-0.3	-0.4	0.44
Hartung 1959	0.64	0.36	0	-0.32	0
Franke 1960	0.67	0.5	0	-0.5	0
Kotoulas 1967	0.7	0.35	-0.35	-0.4	0
Chee and Kung 1974	0.6	0.2	0	-0.1	0
Machado 1980	0.5	0.3145	0	-0.0645	0
Bormann and Julien 1991	0.6	0.5	-0.3	-0.4	0.8
Theory-cylindrical	0.66	0.66	-0.33	-0.66	1
Theory-axisymmetric	0.4	0.4	-0.2	-0.4	0.6

224 fitted to a formula of the form (2), but to formulas similar to 225 (2). [For example, the right-hand side of the formula used by 226 Aderibigbe and Rajaratnam was not $-D$, as in (2), but $227-0.09 D$.] Even though this fact must have affected the result228 ing empirical exponents, these exponents compare reason229 ably well with the theoretical exponents obtained here.
230 Note that the formula (5) holds for the axisymmetric 231 case, but it is formally identical with the formula for the 232 cylindrical case that we derived in a previous paper. ${ }^{2}$ The 233 only difference is that for the cylindrical case the theoretical 234 exponents are $e_{q}=e_{h}=2 / 3, e_{g}=-1 / 3, e_{d}=-2 / 3$, and $e_{\rho}=1$. 235 We endeavor presently to show that our results on the axi236 symmetric case have a direct bearing on the interpretation of 237 the experimental data available for the cylindrical case.
238 In Table II, we compare the theoretical exponents for 239 both the axisymmetric case and the cylindrical case with the 240 empirical exponents determined by various researchers. 241 Nominally, the empirical exponents of Table II correspond to 242 the cylindrical case (they were obtained by fitting experi243 mental data on the cylindrical case). As might have been 244 surmised from the diversity of experimental setups and the 245 vagaries of measurement, and as Table II confirms, some246 times different researchers obtained widely disparate values 247 of a given exponent. Yet, for the most part, the empirical 248 values of a given exponent fall between the theoretical value 249 of that exponent for the cylindrical case and the theoretical 250 value of that exponent for the axisymmetric case. It follows 251 that the data used to determine the empirical exponents of 252 Table II might not correspond to the cylindrical case, as pur253 ported, but rather to cases intermediate between the cylindri254 cal case and the axisymmetric case. In fact, in none of the 255 experiments that yielded these data was the jet uniformly 256 powerful along the direction normal to the plane of Fig. 1. 257 Instead, the jet was confined between lateral walls and must 258 have been weaker close to those walls than in between. Such 259 a jet must have led to a pothole of variable depth: shallower 260 close to the walls, deeper away from them-that is to say, a 261 pothole neither cylindrical nor axisymmetric, but intermedi262 ate between the two.
263 To summarize: on the basis of turbulence theory, we 264 have derived a formula for the depth of a pothole in equilib265 rium with a jet-driven axisymmetric turbulent cauldron 266 where the power of the jet is stationary and no air or granular 267 material from the bed is entrained in the cauldron. The for268 mula represents the power-law asymptotic behavior of a hy269 draulically rough flow of incomplete similarity in the relative 270 roughness of the cohesionless granular bed. The attendant
theoretical exponents compare reasonably well with the few 271 empirical exponents available for the axisymmetric case. Our 272 results indicate that despite current practice, theory may be 273 advantageously used instead of empirical formulas in the 274 analysis and design of overflowing gates, weirs, dams, and 275 natural obstructions. 276

We thank J. W. Phillips and P. Chakraborty for kindly 277 reading our manuscript and suggesting improvements. 278
${ }^{1}$ See, for example, W. H. Graf, Fluvial Hydraulics (John Wiley \& Sons, 279 Chichester, UK, 1998). 280
${ }^{2}$ G. Gioia and F. A. Bombardelli, "Localized turbulent flows on scouring 281 granular beds," Phys. Rev. Lett. 95, 014501 (2005).

282
${ }^{3}$ G. I. Barenblatt, Scaling, Self-similarity, and Intermediate Asymptotics 283 (Cambridge University Press, Cambridge, 1986).

284
${ }^{4}$ U. Frisch, Turbulence (Cambridge University Press, Cambridge, 1995). 285
${ }^{5}$ B. Knight and L. Sirovich, "Kolmogorov inertial range for inhomogeneous 286 turbulent flows," Phys. Rev. Lett. 65, 1356 (1990); T. S. Lundgren, "Kol- 287 mogorov two-thirds law by matched asymptotic expansion," Phys. Fluids 288 14, 638 (2002); 15, 1024 (2003).

289
${ }^{6}$ P. J. Mason and K. Arumugam, "Free jet scour below dams and flip buck- 290 ets," J. Hydraul. Eng. 111, 220 (1985), and references therein. 291
${ }^{7}$ Grains from the bed may become entrained in the turbulent cauldron. 292 Nevertheless, the grains return to the bed as soon as the scouring ceases; 293 see Fig. 3 in V. D'Agostino and V. Ferro, J. Hydraul. Eng. 130, 24 (2004). 294 Thus, the condition of equilibrium between the turbulent cauldron and the 295 granular bed is not affected by the entrained grains. On the other hand, 296 entrained air may reduce the equilibrium depth of the pothole, but the 297 reduction is negligible for the air concentrations usually encountered in 298 applications; see J. Xu, J. Hydraul. Eng. 130, 160 (2004). 299
${ }^{8}$ L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Butterworth, 300 Oxford, UK, 2000), Chap. III, p. 130. 301 ${ }^{9}$ G. Gioia and F. A. Bombardelli, "Scaling and similarity in rough channel 302 flows," Phys. Rev. Lett. 88, 014501 (2002). 303 ${ }^{10}$ Note that our scaling for the shear stress, $\tau \sim \rho V^{2}(d / R)^{1 / 3}$, yields the 304 Strickler scaling for the friction factor at high Re of a rough pipe of radius 305 $R, f \equiv \tau / \rho V^{2} \sim(d / R)^{1 / 3}$. See also G. Gioia and P. Chakraborty, "Turbulent 306 friction in rough pipes and the energy spectrum of the phenomenological 307 theory," Phys. Rev. Lett. 96, 044502, 2006). A more common scaling for 308 f is a logarithmic scaling that for $d \ll R$ can be written in the form $f 309$ $\sim 1 / \log ^{2}(R / d)$, which implies $\tau \sim \rho V^{2} / \log ^{2}(R / d)$. B. A. Christensen has 310 shown [discussion on "Flow velocities in pipelines," by R. D. Pomeroy, J. 311 Hydraul. Eng. 110, 1510, 1984] that, within the broad range of values of 312 d / R likely to occur in applications, the difference between these two scal- 313 ings for τ does not exceed a few percentage points. In other words, for all 314 practical purposes the logarithmic scaling for τ gives the same results as 315 the power-law scaling for τ. 316
${ }^{11}$ See, e.g., A. J. Raudkivi, Loose Boundary Hydraulics (Balkema, Rotter- 317 dam, 1998). 318
${ }^{12}$ O. O. Aderibigbe and N. Rajaratnam, "Erosion of loose beds by sub- 319 merged circular impinging vertical turbulent jets," J. Heterocycl. Chem. 320 34, 19 (1996).

321
${ }^{13}$ S. R. Abt, R. L. Kloberdanz, and C. Mendoza, "Unified culvert scour 322 determination," J. Hydraul. Eng. 110, 1475 (1984).

323
${ }^{14}$ N. E. Bormann and P. Y. Julien, "Scour downstream of grade-control 324 structures," J. Hydraul. Eng. 117, 579 (1991).

[^0]: ${ }^{\text {a) }}$ Electronic mail: fabombardelli@ucdavis.edu

