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PREFACE

This solutions manual was written to accompany the book Introduction to Random
Processes with Applications to Signals and Systems as a study aid. Graduate-level courses in
random processes, for which this book was written, require from the student a considerable
degree of mathematical sophistication. Perhaps more than any other subject in engineering and
science, random processes draws from a wide variety of areas in mathematics and is by its
nature a highly analytical subject. For most students, a course in random processes is an
unusually challenging experience that results in a substantial increase in mathematical
maturity, but not without a considerable investment of effort. This effort primarily takes the
form of solving problems and doing exercises that involve the concepts and analytical tools of
the subject. Although a certain degree of frustration with challenging problems is a necessary
part of the learning process, this frustration must be resolved. Typically, this requires some
intervention by instructors or tutors. And this is the intended role of The Random Processes
Tutor. With the aid of this detailed solutions manual, the student can successfully and
enjoyably master the subject of random processes.

Because the subject of random processes draws from so many areas within mathematics,
such as algebra, geometry, trigonometry, calculus, combinatorics, logic, probability, and real
analysis, as well as from various more specialized topics, such as Fourier analysis and linear
system theory, most textbooks on this subject necessarily assume that the reader has broad
mathematical skills. But in many cases, this assumption is optimistic. For this reason, The
Random Processes Tutor has been written to assist the student in refreshing skills that have
been learned in the past but not recently exercised.

Although there are often a variety of approaches to solving a specific problem, elegant
solutions are preferable because they demonstrate depth of understanding, not to mention their
aesthetic appeal. When various approaches to a solution were evident to us, we chose the one
we considered to be more elegant. Every solution presented in this manual has been
thoroughly checked by both authors. Nevertheless, in over 250 pages of solutions, some errors
are inevitable. For this, we apologize.

ACKNOWLEDGMENT for 2014 Re-Release

William Gardner expresses his gratitude to Mr. Richard Smith and Coauthor Dr. Chih-Kang Chen
for their preparation of errata and insertion into this Re-Release.
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A NOTE TO INSTRUCTORS

For some instructors, the first impression of having a complete solutions manual
available to students will be a negative one. But upon closer examination of the substantial
advantages, we believe that impression will change.

To begin with, development of the skill of independent study is one of the major goals
of every graduate program. As explained in the Preface, this manual makes independent study
of the highly analytical subject of random processes practically feasible for all levels of
graduate students -- not just the top 5 or 10 percent. Independent study here means study
based only on the textbook, this manual, possibly some remedial references, and preferably
(but not necessarily -- at least for some students) lectures. Thus, problem sessions, extensive
office hours, tutors, homework evaluations, and so on all can be done away with, and the
student will naturally learn to become more independent without suffering from neglect.
Moreover, the lectures can have more flexibility because of time not required for explaining
how to approach and solve the problems in the textbook; although this can be done (with
ease) with the aid of this manual if desired.

Of course, this also solves the perennial problem of finding enough instructor time and/or
sufficiently qualified assistants to perform the tasks associated with problem sessions, office
hours, tutoring, and homework evaluation.

Another advantage is that much less reliance on an honor code is necessary, because
students are not evaluated on the basis of their success in doing assigned homework problems.
Evaluation can be based entirely on examinations and, if desired, short quizzes, term projects,
and so on.

With this manual, the instructor’s only task regarding homework is to select which of the
over 350 exercises in the textbook the students should focus on. Instructors who use frequent
due-dates for homework to encourage students not to fall behind can, instead, use periodic
brief quizzes on material from homework (since, of course, there is no homework due when
this manual is used).



HOW TO USE THIS MANUAL

As we all know, problem solving and struggling to grasp new concepts typically involve
frustration; as we also know, it is natural to try to avoid or minimize frustration. Thus, there
is the danger that with a comprehensive solutions manual like this one at hand, the student
will eagerly look up the solution to assigned exercises as soon as each problem statement has
been read. Although some learning would indeed result from this approach, it would not be
deep and lasting. Rather it would tend to be shallow and soon forgotten (maybe even before
the final examination for the course!) and, sadly, the excitement of challenge and the joy of
discovery would be lost.

The depth and the longevity of learning seem to be closely linked to the size of the
reward felt upon discovering the solution to a problem tackled. The size of the reward felt
depends on the magnitude of the challenge, which affects the amount of time and effort
invested in the process of seeking the solution. Simply put, large profits require sizable invest-
ments.

It may seem to some students that understanding the problem statements in some of the
exercises in the textbook, and then understanding the solutions given in this manual requires
enough investment of effort and does indeed feel rewarding. But this involves almost no
challenge: the rewards gained in discovering the solutions by oneself are so much greater.
This is so even if one’s own solution is only partially complete, or partially correct, or can
otherwise be refined or improved on once the solutions given in this manual have been read.
And there is always the possibility of finding a better solution than that given in this manual.

Therefore, please take our advice: In trying to solve the assigned problems that you find
particularly challenging, invest all the time and effort you can. Do not look up a solution in
this manual until you have either succeeded in finding a solution yourself, or your progress
through the textbook would be seriously hindered by not understanding how to solve a
particular problem.



Chapter 1

Probability and Random Variables

1.1 The given set combinations can be reduced as follows:
a) ANBYNBNA)=ANBNB)NA =ANDTNA =2,
b) @ANBYUMANB)=ANBUB)=ANS =A,
c) ANBUC)=ANBYUANC)=ANBYNANC)=(AUB)NAUC),

dy ANBNC =ANBUC =AUBUC.

1.2 Simply draw a Venn diagram of three intersecting sets A, B, and C, and then add and
subtract areas.

1.3 The desired probabilities can be obtained as follows:

m_ 5
Prob = — = — =005,
a) ro . T
by  Prob == _11 - % = 0.0404,
n —
i m m—1 5 4
Brol = =% = =2 x 2 =0.00202,
c) ® 7o xS X o
Gi) Prob =2 x n-l-(m-1) n-m _m
B n-1 n n-1
_ 8 994 W0-5. . 8- pe00
100 © 99 100~ 99
n-m _ (n—1)-m _ 100-5  99-5
Prob = % = X = 0.902.
(iii) Pro . — = =

1.4 a) Let D denote the event that one defective circuit is selected, and let A, B, and C
denote the events that types A, B, and C circuits, respectively, are selected from the
mix. Then
PD)=PDN[AUBUC))
=PDNA)+PDNB)+P(DNC)
=PDIAPA)+PDIB)PB)Y+PMDIC)PC)
1 100 1 200 1 % 300 1

10 2600 T20 “ 600 30 F 600 20
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b) Given the event D, we obtain the probability of event A as follows:
P(AND)
PAID)= ——7
P©D)
PMDIA)PA)

T P(DIAP@A)+PDIBP(B)+PDICPC)

1
.

1.5 Let the event that the first series resistor shorts be denoted by A, and the let the event
that the single resistor in one parallel branch shorts be denoted by B, and let the events
that each of the resistors in the other parallel branch shorts be denoted by C and D.
Then

Prob {short} = P(AN[BUICNADI]) = P(A)P(B) + P(CAD) - P(BAICNDI)]
=p@ +p*-p.

1.6 For any set of n events {A, Ay, ..., A, }, we have
PAUAU -+ - UA ))=PAD+PAN - UA,)-PAN[AU ---UA]
SPAD+PA---UA)

SPA)+P@AY+ - +P@A,).

1.7 a) The probability of instability is given by

1
30000

PANB)=PBIAPA)=

b) The conditional probability of instability is given by

P(AIB):P(AnB)/P(B)=$.

oo

1.8 a) Since I fy()dy =1, then for the given probability distribution it can be shown that

—oo

a=>b.
b) Since the desired conditional probability density is given by

Fylyseso@) =P <ylY >c)

Ch. 1: Probability and Random Variables
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_P¥<yandY>c) _P(c<Y<y)

P(Y >c) T P(Y>c)
y
,[ Fy@)dy
=Z— §32u,
| fr)du
C
then the conditional probability density is given by
ae ™V il
frivseso0) = =ae@079,  y>c
J ae ® dx

c
¢) Similarly, the desired conditional distribution is given by
Fylo<e<y<a®) = P(Y <y)I0<c <Y <d)

y
ny(u)du
Plc<¥Y<y<d) _ ¢

P(c<Y<d) 4

fy@)du

= <
e ¢ _ pad ’ ¢c<y<d
and the corresponding density is given by
—ay o
ae ae
frioce<y<a®) = 3 = ot _ g-ad’ c<y<d.

_[ ae X dx

1.9 @) The probability that the digit 1 is received is given by
P[Y=1]1=P[Y=1IX=0]P[X=0] + P[Y =1IX =1]P[X =1]
=4,9 tP1P-
b) The conditional probability of error is given by
P[Y=0IX=1]1=gq;.
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¢) The unconditional probability of error is obtained as follows:
Poor =P[Y=0X=1]P[X=1]+ P[Y =1|X =0]P[X =0]
=q1P t 4049

1.10 Referring to Figure 1.9, we have the probability density
fx&x)=P8(x -V )+ Pydx —V),).

Letting Y be the voltage across the resistor, we have the density

y2
frO)= T {—272}.

Letting Z be the total voltage across the whole circuit, we then have the density

f2@) = [ fy@=s)fx(s)ds = Pify(z =V ) + Pofy(z = V).

1.11 For Y = (X —b)/a and a > 0, we have the probability distribution

Fy()=Prob{Y <y} =Prob{X_ <y} =Prob{X <ay+b}=Fy(ay+b)

_dFy() _ dFx(ay+b)
fro)= 2 = afy(ay +b).

For a < 0, we have the distribution

-b

Fy(y)=Prob{Y <y} =Prob{X <y}=Prob{X>ay+b}=1-Fy(ay +b)

dFy(y)
dy

fy@)= = —afx(ay +b).

Thus, the probability density is given by
fr(f)=lalfx(ay +b).

1.12 @) (i) oo=1, B=0. To show that the area of the probability density is unity, we
proceed as follows:

—Z%exp{——;—rz}rdrde

O— 8

oo n
_ 1 2 _
_j 3oxl— kPt ity = !

2
= J—def exp{—t}dt = 1.

Ch. 1: Probability and Random Variables
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Thus,

Lo =
J\/Z exp{ 2x }dx = 1.

(ii) o # 1, B # 0. For this more general case, a change of variables in the area

78 el 1By

- 2mor”
of the density yields

T% —lzz}d

Then it follows from (i) that J = 1.

b) From the hint, we have dw = 1

= dy. Therefore, using the hint, we have the
o ,\/ 1— ,Y2

univariate density

fx@) = [ fxrGe,y)dy

oo

= exp{—- (2= Y Yexp(—t w20y 72w
e 2mao\ 1 —y2 2"« 2

Lcup(-1(Z2BY) | [ pzelg

1, x—=PB\2
-—exp{-gﬁaf‘) 3
which is (1.23), as desired.

¢) To simplify the proof, let Z = U + V, where U = aX and V = bY. Then,
E{U}=By =aB, Var{U}=0} =(au)?
E{V}=By =bP’, Var{(V}=a}=®a')’, Cov{U,V}=abCov{X,Y},

from which it follows that 7y, =7y and

s X, )i

Fov@,v I]bl

It follows from (1.45) that f,(z) = J- fuv(z —v,v)dv. Therefore, the probability
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density is given by
1

fz(z) = e
Zﬂauav\/l—“ﬁ%v
=Py v 7=y v—Py 2
-2 +
{< IR Y oy (o (P ()
exp 5
2(1=vgv)
Carrying out the above integration, we obtain
1 1 @-By-Bv)®
f2) = —— —ep{-1— .
V21 o2 + 2y Oy Oy + 02 oLy + 2Yyy Oy Oy + 0Ly

= o5

which is a Gaussian probability density function (with m =af —bB’ and

62 = (aa)? + 2yaboo” + (ba)? ).

d) From the definition of conditional probability density, we have

Fxir(eIr =y) = -f—X?”Y()(‘y—)”
[ By gy (2B fy » 2R
 2nao \/1 -2 20T 2(1-v%
x \amoexp{ - (2=20)7)
20 o
_B’
_ e p{__ X - [B+’Y('X_a—;—)a] )2}
\/2noc\/1 —y2 on1-y2

1 x — BI/
= oL B,
which is a Gaussian density.

1.13 In this case, the probability density of Z =X + Y is given by

za‘z, 0<z<a
fz(2)= fo(z—u)fy(u)du =V2a1-2a%2, a<z<2a
e 0, otherwise.

Ch. 1: Probability and Random Variables

}av.

J
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1.14 Let
Y=Y,=X;+X, and Y,=X,
or, equivalently,
Y = AX,

where

Y=1¥; L¥E, X=[X; LT, A

Il
| |
O -

o
[ ST |

Then, from (1.41), we have

fx@Ay) -
fy»= XIT— =fx([y 1y2y2}) = fxx,01=Y2 Y2 = Fxx,0 =X2 X2).

Thus, from (1.43), we have
Fro) = [Fy@dyy = [ Fxx @ —x2 x2)dx;

for the density of the sum ¥ =X + X,.

1.15 Define two vectors Y and X by
Y=[Y; Y, ad X=[X; X,I".

Then
\NXZ+X3
Y=gX)=
tan~}(X,/X,)
or, equivalently,
Y cosY,
X=g(Y)=
YlsinYZ

From (1.39), we have

I —
| 5 1 | COoSy, —yiSiny, |
v =o' B W fy @) |
| oy | |siny, yjcosy, |

Y1 1 5
= — - , 20, 0<y,<2m
le_‘exp{ 2y1 } Y1 V2

The marginal densities are, therefore, given by
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oo 2n
Y1 1 1
Fro0= [ Fy®dyy= | Eexp{—z)’%}dJ’2=J’1eXP{—5}’12}, y120
“e 0

I Iz 1, 1
fr,002) = _J;fY(Y)d)’] = _(’; —Z—TECXP{_E)II Yy, = e 0<y,;<2m
It follows directly from the preceding that

fry,01¥2) = Ffr,00fr,02):

and, therefore, Y; and Y, are independent.

116 Let X =[X; X,17 and Y=[Y; Y,]7. Then, from (1.39), we have
|

d
fx(x) = fY(Y)[ y '

where
I l
] x1 Xz I
| ) 77 |
P \Nxf+xF  Axf+x3 | 1
[ =l= | =
)
LoxX | | —x, X | \/M +x3
} #2+xs  xfexd }
Therefore,
1 1
A N 0<y,<1.

2 2

fx(x) = —CXP{——)’ }
X 2 : \]xl +.XZ

Buty, = \/xlz +x# and, therefore,

2 2
il Xi+x
Fx00 = 5exp{———""1 = fy e)fx, o).

Thus, X and X, are jointly Gaussian and statistically independent.
1.17 From the density (1.49), we obtain the distribution

y
il
Fyoy =] [ rodn 1=y 5

0, y <0.

Ch. 1: Probability and Random Variables
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1.18 Observe that the inverse function g"l(-) does not exist. However, it can be seen by
inspection that

-

-
[Fx)dx 80 +1), =<y <=-1
frO0) =9 rfx®) -1<y <1

J.fx(x)dxﬁ(y—l), 1<y <o
1

.

1.19 a) Since 0 <Y <1 and dg (x)/dx = fx(x), then it follows from (1.36) that
fx) _

\dg (x)idx|
which is the desired density.

b) From (1.36), we have

fro) =

0<y<=<1

= Ly

|
fz(2) =fy(h-1<z»}

a =fW(Z)’

dh~(z) }_ g dFy (z)
dz |
which is the desired density.

¢) Let k() be the composition of Fy;!(-) and Fy(-). Then Z = Fy,!( Fx(X)), and it
follows from parts a and b that F,(-) = Fy,(*), as desired.

1.20 a) The probability density for the uniformly quantized random variable Y is given by
n+1/2

Fr0)= 3 | frGdx 80 —n).

n=—co p-1/2

b) The values of the quantization levels {x,} are the solutions to the M equations,

Xn+1

J.fX(x)dx=£, n=1,...m,
m

Xn
where

Xm+1

PA | fyeydx.

X1

¢) From part b, for x; <0 and x,,,; > O given, the quantization levels {x, } that yield a
uniform probability distribution for ¥ are found to be

. 1. 2P
@  xpg= ;ln[7 + e, X,41 <0
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Fw:_ E]
m b

) “xp e ‘71111[2 —e &, CDL R, 54

(i) x,4 = ;—lln[e"”‘" - 2713], 0 2%, < %55
where

P = —;—[2 — ™1 — g7y,

1.21 a) In this case, we have from (1.29) the joint probability density
fxy@, ¥)=fyixO X =x)fx(x) = fz(y =x)fx (x).

b) In this case, we have from (1.29) and exercise 1 in chapter 2 or (1.39) the joint
density

Fxy@, ) =frixO X =x)fx(x) = xIfzy)fx x).

1.22 For the half-wave rectifier, we have the distribution
Fy@)=PH{Y <y}IN{X <0OUX 20)}]
=P[Y<y)NX <0+ PI¥ <y)NX 20)]
=P[Y<ylX<O0P[X<0]+P[Y<ylX=20]P[X 20]
= Fy;x<o0)P + Fyx>o()(1-P),
where
PAPX<OL
Thus, we have the density
fr®) =Fyrix<o0)P + frix>o®)1-P).
But, if X < 0, then Y = 0; therefore,
Frix<o®) =8().
Also, if X >0, then Y = X; therefore (cf. exercise 1.8),

fxOu@y)
frix 200’)=XIT,
where
1, y >0
u(y)=
0, y <0.

Hence, the density is given by

Ch. 1: Probability and Random Variables
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fr@)=P3Q) + fx(u®),

where

0
P A [fy@ax.

1.23 From the definition of conditional probability density, we have

Prob[(X,Y)EA,(X,Y)e B]

PAProb[(X,Y)EAIX,Y)EB] = Prob[(X,Y)€ B]

Prob[(X,Y)EA]
= Prob[(X,Y)GB]’
0, A C B.

A cCB

LetA ={(X,Y):x <X <x+¢&y<Y <y+e¢e}. Then, with € = 0, we obtain

fXY(x’ )’)

P = fyyix.rye @, y) = _Lffxy(u, v )dudv

x,y)€B

0, (x,y) €B.

Finally, let B be given by
B = {(u, v): u®+v*<a?},

and let X =X, and Y =X, be zero-mean, unity variance, independent, and Gaussian.
Then by a change of variables of integration, it can be shown that

Jf fxy(@, v)dudv = ”l 2_ln_e—(u2+v2)dudv -1- e—aZ/Z.
B

uvi<a®

Therefore, the conditional joint probability density is given by

1 e—()cl2 +x2)2

- 2
2 1 - e—a2/2 ’

xf +x2 <a
Fxx,lx2+x3<a?X1: X2) =

0, otherwise.
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1.24 Let fyy(x, y) = fx®)fy®). Then, from (1.39), we have
| ox ox

| — ==

|

| ou ov :
fuv(u,v)=fxy(X,)’)| |
|9y 9y |

| ou ov |

= < 0g ') oh~!
= fx @ @) fy(h 1(V)){ gau(u) av(V) _O}

= fy@)fy®).

Thus, U and V are statistically independent as well.

1.25 Using the definition of conditional probability density, we have in this case

frixO X =x)fxx)
fr@) .

fxiy& Y =y)=

We also have
Frix@ X =x) = 8y =x?).
The probability distribution function for Y is given by
Fy(y)=Prob{Y <y} = Prob {X*<y}
= Prob {[X <Vy and X >0] or [-X <\y and X <0]}

= Prob{0< X <Vy } + Prob {0>X >y }
Ny 0

= [ fy@z + | fx@)dz.
0 -~y

Thus,
FrO) = NL—UXNJ )+ frx (=)
Yy
and

_ 3y —xDfx(x)
Y =y) =2 — .
Txir & *) yfx(‘IY)+fx(—‘/)’)

Ch. 1: Probability and Random Variables
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But,
8y —x%) =8(x —Vy ) + 8(x +Vy)
and
8(x —a)fx(x) = 8(x —a)fx(a).
Hence, the desired conditional density is given by

80 =y )fx (y ) + 80 +Vy )fx (V)
Y =y) =20 A2 - )
Tl =) =2 Fx )+ fx )




Chapter 2

Expectation

2.1 @) We have the uniform probability density

1
fx&x)=% b-a’
0, otherwise.

a<x<b

Therefore, the mean and variance are given by
b

E{x})=]

X =b+a
b—-a 2

2

. b3—a®  a’>+ab +b?

AR —
HHE = b—adx" 3(b-a) 3 ’

Qe—m > R
=

Var {X} = E (X2} — EX{X} = %‘i.

b) For this uniform probability distribution, we have

E{Y}=% ilA: (n+1)

i=1

n 2
Var{Y}=E{Y*} - EXY} = % 3 (a2 - Zl)—AZ

_nm+D)@n+l) o (+1)* o _ n?-1
6n 4 12

2
¢) Forb —a =nA, part a yields Var {X } = ’11_2A2: Var{Y} forn > 1.

2.2 a) For the specified probability distribution, the mean is given by

oo

EX)=3 nPX=n)=(1-y) 3 ny"
n=0 n=0

But, since —5——7" = n‘y"—l, then

- d d 1 Y
n n: s n = — = .
,E’o 1 de ,E‘oy de 1-v q-y?

Thus,

14 « The Random Processes Tutor
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__
BX) =1
Similarly, the mean squared value can be obtained as follows:
o d2 oo oo
E{X’)= 3 n’(1-9y"=(1-D¥’—— T ¥"+ X ny"
n=0 d’Y n=0 n=0
SV SN, 00 O . 2
a-y*  a-y*/ a-yp* 04-v

Therefore, the variance is given by

Var (X} = E (X2} — E*X} = — L
ar {X'} (X<} X} (1—y)2+1—Y D

b) For this exponential density, we have the mean

oo

oo ]m oo
E{Y}= bee'bydy = —j yd(e™) = —ye™ lo I e™dy = —é—
0 0 0

and the mean square
E{Y? = ". yZbe™dy = —J y2d(e ™) = —y2e Ip ¥ ZJ. ye ™dy = ?
0 0 0
Therefore, the variance is given by

Var (Y} =E (Y% - E{Y} =

b2’
2.3 For this scaled random variable Y, we have the mean
my = | 3fr@)y = [ 2ofx(S)dy
J- %fx(%)dy, a>0 ajufx(u)du, a>0
= _: = —:e =] amX;
] LDy, a<0 | -afupy@idu, a<0
a a

—oo =

also, my = E {aX } = aE {X } = amy. In addition, we have the mean square

oo

" 2
EY = [yYyo)dy = [ Sy (D)ay
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azjuzfx(u)du, a>0
3 = a%E (X?);

—a? [u’fyu)du, a<0

also, E {Y?} = E {(aX)?} = E {a*X?} = a®E {X?}. Therefore, the variance is given by

of = E{Y?) — m¢ = aX(E {X?}-my) = a’c3.

2.4 Using Y = g(X) and (1.36) yields the mean
Ix&®)  dg(x) .
dx

oo

E{Y}= dy =
{v} fyfy(y)y fg(x)ldg(x)/dxl

y=—c0

—oo

-

[ gifyax, 4z
W 4g <0

- [ gofx@)dr, gy

C

= [ g)fy)dx 2 E{g(0)),

which is the desired result (2.8).

2.5 a) The relationship (2.17) can be verified as follows:
0% = E{(X —my)?} = E (X*-2my X +m}
2

= E{X?) - 2myE{X} + m} = E{X?} - m¢.
b) The relationship (2.22) can be verified as follows:
Kyy = E{(X —my )Y —my)]}
=E{XY}-myE{Y} —myE{X}+ mymy

Ch. 2: Expectation
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2.6 a) For the Gaussian density (1.23), the mean is given by

oo oo

— 2
me =E(X) = [ —Z=exp(-3 (AP Yax = | 2P erp(-2-Joay

—oco

a2 T ef2®
—B_L \/ﬁexp{ > }dy+oc_J;c \lﬁexp{ 7 }dy.

The first integral is unity as shown in exercise 1.12a. The second integral is zero
because its integrand is the product of an even function and an odd function and is,
therefore, an odd function; thus,

The variance for this density is given by
2

of =B} - mi = [ e (-3 (E=E))ax - p?

= 021 + 2080 + B%1 — % = o%.

The coefficients 0 and 1 in the second and third terms are obtained as in the first part.
The coefficient 1 in the first term is obtained from integration by parts:

oo 2 -
J.yzexp{—yz—}dy = 2.

b) The correlation coefficient is defined by
A Kxy _ Ryxy —mxmy

4 Ox Oy COx Oy '

where
Ryy =E{XY} =E{E{XIY}Y}.

From exercise 1.12d, we also have for these jointly Gaussian variables

e 1
fX|Y(xIY"y)_ (X”\]ﬁ

expl-5 (22557,

where
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Y& —my)ox
+ e ————————————

and o =oy\1-v2
Oy

B = my
Therefore, E {X Y} = B” and

Y(Y —my)Cx ) )

Ryy =E{E{XIY}Y} =E {(my +
Oy

Cx Oy
2,2
= (my —ymy —)my + y——(0§ +my)
Oy Oy

= ’YGXGY + mymy .

Consequently, p = .

2.7 The probability density for the quantization error £ = X — X is given by
1/A, le] < A2
Fe@ =)0,  lel>an,
where A = 30/(n —1). Therefore (see exercise 2.1a), the error variance is given by

2
of = B DF

Thus, for 6Z < 0.3, we require n > 30.

2.8 a) Fourier transforming the given characteristic function yields

0

_lw—ll—' _1 i Qx °<‘—(u—'o)x
fX(x)—E_‘[oe““’e’“’xd(o—E _Le“e’ dco+_([e“e’ do

1 1 1 alm
== . + . = ’
2t | a —ix a+ix x2 + g2

which is the Cauchy probability density.

b) Since fy(x) is even, then E {X } = 0 and, therefore, the variance is given by

oo

2 o =

2a | | X
Var{X} =E{X*) =2 | ——ax = 2| x|, ~ atan 1 =] | =0
i bE 15'[<,x2+a2 N alg

that is, the variance does not exit.

Ch. 2: Expectation
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2.9 Since the Gaussian density is given by

1
xX) = ———
Fx@ onN2m
then it can be shown (by Fourier transforming) that the characteristic function is given
by

=By,

1
xp {22

Dy () = exp{iﬁu)—-;—oczmz}.

From (2.14), we then obtain the following moments:

1 4%y (®) l

E X = = 5
{X} 7 B
2 l
E(X} = — — =B+l
i do lo=0
3 |
1 @°Px ()
E{X% = ————1  =p3+3B,
i3 do® le=o0 P g
240, () |
E{x% = 1 220 = 3a* + p* + 602B2%.

i* do* le=0

2.10 From (2.13), we have

oo

| d"n el fy (x)dx = [ (ix)"e!® iy (x)dx.
S d®

—co

d" @y (w)

do® B

Thus,
1 -
1 d"Px (@), )
—r————— = | x"fy(x)dx = E{X"},
i" do" le=0 _'[o Tx

which verifies (2.14).

2.11 From (1.32), we have the convolution

f2@) = [ fx(z—u)fydu.

From (2.13), we therefore have the characteristic function

oo

@, ) = [l f,()dz = [[ e fxc —u)dz fy(u)du

—o0

= [ @y (@™ fy@)du = Oy (0)Dy (),

—oo
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which proves the convolution theorem.

2.12 We have the random variable

R 2 & 1 Z 1 2 1 =

Y";ZXZ___ ZXka+—22 ;z —?EXin.
: J i k=1 i,j=1

1 £ 1 & Ox n—1
E{Y}== Y of-— Y of=0f% 67 — ©f, asn — oo,
n P : n

Also, since the squared random variable Y2 can be expressed as

1 2 &
— 2 XXX - X XXX

1 n
y2__2 2 2X1
no g, j=1 n- o k,i,j=1

k,i=1
then using the hint yields (for Gaussian variables {X;}) the mean square

S [EXAE(X?) +2EHX,X,) ]

1
E[YZ} = —
n= g,1=1

t 3 IEXIEGX) +EGXE X)) + E (X E (XX )]

n
% 2 [E{XAE (XX} + 2E{X, X, }E (X, X;}]

n= ki, j=1
= (o} + Zof) + —@n%c}) - Z(n’cf+2n0H)
]’l
@*-1) 4
= Cy.
n2 X
Thus, the variance is given by
_ pio sz
Var (v} =E(¥?) Xy} = 20 Dot 5 ZX 0 a5 n e
n n

2.13 a) Let M =N, + N,, where N and N, are independent and have the probability mass

functions

",y
Py (n )=—7\'1 g and Py.(n,) = e g me=0,1,72
N\ 1 N\2) = ) > 1ny=0,1,2,....
nl. ny

Then, the probability mass function for M is given by
m m 7\,1"1 Q\Qm_nl oy
P s P P _ — i —(Mt+A2)
WO = B PO )= B =t

n,=0

Ch. 2: Expectation
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m! m!

_ e—(7~1+ M) m 1}\/Zm (7\'1 L 7Lz)m e-(7\.1+ )
g n 1 ’

which is a Poisson distribution with parameter A = A; + A,. Thus, by induction, for

m
M = 2 N;, we have

(§>

Py (k) = —=—exp(-F 1, ).
i=1

oo k
b) Using the identity e = 2 2‘— yields

Mean = 3, nP(a)= 3 —>

n=0 n=1 (n =1 m=0

and

oo

Variance = Y, n*P(n) — A% = i #N‘e"‘ -2

n=0 n=1 (n =D
< n-1 = At
= e 4 A _ )2
Z ) Z -1
_w _A 4 o A" 42
_Ez 1 -2)! K”EO et

214 Let w(x,y)=fxy(x,y), h(x,y)=x, and g(x,y)=y. Then the Cauchy-Schwarz
inequality (2.65) yields

|E{XY}?> < E{X%}E{Y?}.
This must also be true for X" =X —my and Y’ =Y — my. Therefore,
|Cov (X, Y}I? < Var {X}Var{Y},

from which we obtain |p| < 1.

2.15 a) Let w(x,y)=fxy(x,y), gx,y)=x —my, and h(x,y)=y —my. Then the
triangle inequality (2.66) yields

E{[X +Y —(my +my)2} " < E{(X —my)*}? + E (¥ —my)*}2,

from which we obtain
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b)

For W =X + Y + Z, this yields
Ow < Oy,y + Oz <Oy + Oy + Oz,

and similarly, for the sum of any finite number of random variables, we obtain the
sum of standard deviations.

We have
E{(X+Y)*} —-E*X+Y}
=E{X%}+E{Y?} +2E{XY} - E%{(X} - E?>{Y} - 2E{X}E(Y}.

Since E{XY} =E{X}E{Y} for statistically independent random variables, then this
reduces to

7/, ) 2
Ox.+y = Oy + Oy.
For W =X 4+ Y + Z, this yields
O} = 6%,y + 62 = 6% + 6} + 02,

and similarly, for the sum of any finite number of random variables, we obtain the
sum of variances.

2.16 Contours of constant elevation are always ellipses for jointly Gaussian variables. When
|[p| — 1, the contours collapse to a line. When |p| — 0 and oy = Oy, the contours are

circles.

2.17 From the description in the exercise, we have the joint density

fxy@x,y) = é
with x and y bounded by the four line-segments
y=x+ %, for (02;7;) <x < (az}g)
y=x-—g o (azgib) =xs (azzlLib)
y=-x + —%, for (azgib ) <x < (azzlLfb )
y=—x-75  for ("2351’) <x< (a2§§)-

The marginal density for X is therefore

Ch. 2: Expectation
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x+bN2 b B 5
a+ a+ a-—
— dy = —(2x + ! S e
ab_x fa/(y ab ( 7 22 202
1x+b/\/§ 1 . 5 "
=1 » | ay = ab 2 anz : azd_i
ab . _yn3 4
—x+a/\I_ b 5 5
a+ a— a—+
dy = —(—2x + ——), — < x < .
ab N JNZ Y b ( RN,

\o

Replacing x by y in the above equation yields the marginal density for Y. From fy and

2 2
fy we can show that my =my =0 and Gy =0y = a—z_%b— . Also, the correlation is
given by
Ryy = ” xyfxy (x, y )dxdy

a-=b b a-b b a+b a
v ' 2w e | 2w e
- J. y j xa’xdy+L I y J. x dxdy + — j-y _[ x dxdy
ab . ab b ab 2,
a2 T\ 2 TTwm P )
_a-b a-b
i 202 b 2 5 i 22 B 3 B <3
Y a ¥
= == == +—) — o = dy +— = | e d
b | 3o -oe e | 2o+ -0l
T2 T2
a+b
, 2V2 ) b 2
y a
+ — - e - — d
ab aib 2 0-5) -0 -l
22
_a-b a-b
i 2 22 2_p2
=— | (2 e (———)yz] f iy = F—2.
ab atb \2 0 24
2V2
Therefore, the correlation coefficient is given by
e Kyy  Ryy —mymy 42— p?
Ox Oy Ox Oy a?+ b
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When a = b, then p = 0; when b =0, then p = 1; and when a =0, then p = 1.

2.18 a) For N =X — aZ, we have
E{N?} = a?E{Z?} — 2aE {XZ} + E {X?}.

Therefore,

5
dEWNTY _ B (22) - 2E(XZ) =0 —> o =212}
da E{Z?%)
and, consequently,

E{NZ}=E{(X —aZ)Z}=E{XZ} —aE{Z*} =0

when E {N?} is minimum.
b) We have the two variables
X=aZ+N; and Y =a,Z +N,,
for which E {N,Z} =E{N,Z} =0. Thus,
E{XY)} =aa,E (Z%} + E{NN,}.
Let X and Y be defined such that
E{NN,} = —aa,E {Z?}.

Then X and Y are orthogonal. We can show the same for X —my and Y — my, in
which case X and Y would be uncorrelated.

219 a) If fxy(x,y) = fx&)fy(), then
Kyy = E{XY} — mymy = [[ xyfx G)fy 0)dxdy — mymy =0.

b) We have the correlation

oo

Ryy =EXY} =E{X3) = [x3fy(x)dx =0

—oo

since the integrand is an odd function. Also, we have

oo

my =E{(X} = [xfy@)dx =0.

—o0

Thus,
Kyy = Rxy — mymy =0,

and X and Y are therefore uncorrelated. But X and Y = X2 are obviously not
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statistically independent.

2.20 We have the expected sum of squares

E{[ i c; (X; — mXi)]z} =E{ z"; cicj(Xi-—mX[)(Xj—ij)}
i=1 [

where the covariance matrix Kx is defined to have ij-th element K,y and c is defined
to have i-th element c;. Since

CTKXC=E{ Z Cicj(Xi_mX,-)(Xj_ij)}

i, j=1
n 2
=E{ ¥ ccXX;}- Z cicjmymy, =E {[ 2 %]} - mge)%,
i,j=1 i,j=1

where my is defined to have i-th element my , then
n )
E{[ X ¢X:] } = T Kge + (mfe)2

i=1

221 Since Y=[Y; Y,...Y,]T =Rz"X and (Rg"?)T = Rz, then
E {YYT} = E {R§1/2 XXTR}EI/Z} - R}—(-I/ZE {XXT}R)?I/Z
= R};l/Z RX R)Ellz = R)?l/z (R}}/Z R}}/Z) R}El/z =1

and, therefore, Y, Y5, . . . , ¥, are mutually orthogonal and have unity mean squared

1, i=j
0, i#].

2.22 Let the density functions for the independent Gaussian random variables X and Y be
denoted by

values:

X —my

)’}

_ 1
Fx®&)= \lz_e xp{- 2( Oy

and

YT,

fr&)= m exp{——(

Oy
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respectively, and let the complementary error function be denoted by

erfc(z) 4 i_ e™dw.

\r

N — }

Then,

PXY>0=P(X>0and Y >0)+ P (X <0 and Y <0)
=PX>0P ¥ >0)+PX<0)P (¥ <0)
=PX>0P(Y >0)+[1-PX>0)][1-P( >0)]
=1+2PX>0PT¥>0)-PX>0-P¥ >0)

1
—1+— fo(o==) — —erfe (= )——f ),
erfc( )er \/2 = ) 2 er \12 = c(
since

I 1 u T 1 2
P(X>0) = ex —edw

-0[ X‘\jz p{ —mX;[/EGX ‘\ITC

—— s _mX
g ( 20y )

2.23 a) From the definition, the Median x, must satisfy

[ fxedx = [ fxe) = %
Also,

Fy@xg)=1—-Fy(xg=—

- 2
For the Gaussian density, fy(x) = \/IT exp{——;—(%) }, we have the mean
/I

value
Mean—j \/_e p{ (x B)}dx_
and since
i Xo i [3 (xo-B) /o
X — 2
E J‘ a\/—exp{__( ) } J. \/_exp{-— }dx’

—oco —oo

then xq = B. Thus, we have Mean = Median.

Ch. 2: Expectation
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2
For the Rayleigh density, fy(x) = —%—exp{—%(i) } for x =0, we have
04

Mean =;|j ——( ) Jax ——xexp{——( ) }

+ [ erpl-(5) }ar = E2E

O §

and since

i% (-2 Yar = 1 - exp{-S(2)’),

then xo = oN2In2. Thus, we have Mean # Median .
Since it can be shown that
E{IX—al}=E{IX -xgl} +e,

where
Xo

ézj (x —a)fx (x)dx =0,

then a = x yields the minimum of the mean absolute error. In addition, since
E{[X-al?} =E{IX*} - 2aE {X} + a2,

then the derivative with respect to a is zero when a = E (X} = my, and this yields
the minimum of the mean squared error.

dfx () |

X [x=x.

From the definition, the Mode x. must satisfy = 0 and, therefore, x:

need not be unique.
For the Gaussian density, we have
dfx(x) 1
dx oulZn o

Bexp{-2(2=E)’) -0

and, therefore, x: = B. Thus, we have Mean = Median = Mode .

For the Rayleigh density, we have

de(x) 1 {__( )}——exp{——( )} 0

dx
and, therefore, x« = o. Thus, we have Mean # Median # Mode # Mean .

In general, if fy(-) is an even function, then Mean = Median; if fyx () is also
unimodal, then Mean = Median = Mode .
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2.24 a) From (1.24), we obtain the variances ¢} = 1.6 x 1071° V2 and o2 = 6.4 x 10710

V2,
Since E{A} =my =E{B}=mp =0and p = 1/2, then
Var{A+B}=E{(A+B)*} =E{A?%} + E{B?} + 2E {AB)

=G} + 6} +2pc,0p = 11.2x 10710 v2,

b) From exercise 1.12d, we have the conditional mean

2.25 a)

E{BIA}=my + G—BA— =A=10"° V
=mpg PG ( my) = .
A

From exercise 1.12d, we also have the conditional variance

Var (B1A} =cZ(1-p?» =48 x 10710 v2

To verify the formula (2.38) for the joint characteristic function for jointly Gaussian
variables, we proceed as follows. The probability density function for a single
Gaussian random variable Y is given by

_ | _1x=By
fr0) = —=exp{-5 (=)}

The characteristic function for Y is given by

1
oV2n

@y (@) = E{e70) = | eXp{_%(y_;_B)Z}efymdy.

Using the change of variable u = (y —B)/0 in the above equation yields

@y (®) = expliBo— 2 (©0)?} | —s=exp(——(u i aw)*}du = expli Po-—(00)2).

2 2 A\2n 2 2
Therefore, for ® = 1, we have @y (1) = et B-or2 Next, we let Y A X" w, where the
elements of the vector X are jointly Gaussian and Y is, therefore, Gaussian. Then
B=E{Y}=E{X"w} =E (X" }0 = mio
and
o= Var {Y} = E{(Y -B)*}
= E {(@" X -0’ my)X” o-miw)} = o’ Kyo.
Hence, we have
Dy(1) = E{e”} = E (/X' ®) = ¢iB-0"2 exp{imgm—%mTKXm},

which is the desired result (2.38).
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b) Performing the N -dimensional Fourier transform of the joint characteristic function
(2.38) yields

Dy (m)exp{—ix! ®}d®
any 2. I X P

oo

1 - 7

= exp{——®"' Kxo}exp{—i (x—my)’' 0}d®.
o _J; Pl X p X

Using the change of variables @ = Kz and d® = [Kx|™"2dp in the above

equation yields

oo

1l 7 : L)
- exp{—i (x—m,)' K d
@n)" |K |1/ .[ 2"" plexp{—i( O Kx'“nldp

1
" e Kyl i T expi-a2) f exp(~( +ia; Pdi;,
where
a:[al a2 v e an]=(x_mx)TKi1/2.

Since —;_— j ~V24y = 1, then the above equation becomes

1 12 2 1 ni2 L g
e (2m)"“exp{-a;/2} = ——————(2n)""“exp{——-a’ a}
(27'5)"|le1/2 JI-II (zn)n/21KX|1/2 2

1 1 -
- G- K o),

which is the joint probability density function for an n-tuple of Gaussian random
variables X.

2.26 Since the conditional mean is defined by

oo

EXIY} 2 [xfyipxiy)dx,

—oo

then, by using the definition of conditional probability, we obtain

EEXIYY = [ [ [xfypemdr 1fy00dy = [[ xfxy e, y)dxdy

= [xfx@x = E(x),
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which verifies (2.45).

2.27 a) The mean squared error is given by
E{X-X)?} =E(X?) +a’E{Y?} + b?+2abE{y} — 2aE {XY} - 2bE {X }.

Solving the above equation for @ and b that satisfy the necessary and sufficient
conditions

9 _¥V2) = 9 B0
aaE{(X X)*}=0 and abE{(X X)*} =0

for minimization yields

Ox Ox
a = —'_‘pXY and b = my — —pXme.
Oy Oy

Therefore, the minimum-mean-squared-error estimate is given by

Ox
X = my + __pxy(Y —'mY).
Oy

b) From exercise 1.12d, we have the conditional mean
Ox
Y

for jointly Gaussian X and Y, and this is the same as X from part a.
¢) It follows from the result of part a that the minimum value of the mean-squared-error
is given by
MSE 1y = E{(X —X)?} = 6}(1-pgy).
Thus, the normalized minimum mean-squared-error, MSE ;. / G2, is small if and only
if pyy = 1.

2.28 Since the conditional distribution for X |X >a is given by
PX<x and X >a)

Fyixsq@®)=PX<x|X>a)=

PX >a)
P(a<X<x) X —a
= = , a<x<l,
P(X >a) 1—-a
then we have the conditional density
1
Frwsa®)=7__» a@a<x<l.

Hence, the conditional mean is given by

oo

E{XIX>a) = [xfyixsq()dx =

—oo

1+a
2
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and the conditional variance is given by
E{X -E{XIX>a)}?|1X>a}=E{X?X>a}-E*XI|X >a}

_l+a+a® (1+a)* _ (1-a)
3 4 12

As a — 1, Mean — 1 and Variance — 0 since fyxs,(&x) = o(x —1).

2.29 Since H fxy(x, y)dxdy =1, then for the given joint density we have ¢ = 6. Also, we

—o0

have
Ferle, v} = fx iy fxE) =2, x20
and
fy(y)=3€_3y, yzo
a)
PX>12and Y >1/3)=PX >1/2)P (Y >1/3)
= [2eax [3eay = L.
12 1/3 e
b)
CPXSI2Y>13)=P(X>1/2) = L.
e
c)
(" 11 1
EXY) = [[ e, y)dxdy = mymy = — x — = —.
d) Since
P(1/3<Y <
Fyiys130) =P <ylY >1/3) = W
b
[ fy@du
=B ysus,

[ frt)du

1/3
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then

fr®) .
frivs1p0) = ——— =3, y>13.

[ fr)du

1/3

Hence,

E{XY|Y>1/3} =E{X}E{YIY >1/3}

oo

= [ 3 [ 3y o150y = -

—oo

e)

E{XYIY=1/3}=%E{X}=%.

2.30 To verify (2.47), we start with the definition

E{E(XIY}IZ} = [[ xfy iy Cely)defy iz O 12)dy.

But, since Z = g(Y), then

fxyG)=fxiy z&ly, 2).

Also, we have

[ friw 2y, Dfyiz012)dy = frizCelz).

Therefore,

oo

E{E{XIY}IZ} = [xfyiz(x12)dx = E{X1Z},

—oo

which is (2.47). To verify (2.48), we observe that since Z = g(¥), then
fziy(@ly) =8z —g(®)

and, therefore,
E{E{X|Z}IY} = [E{X|z}f71y(zly)dz =E{X|g(¥)} = E{X|Z},

—oo

which is (2.48).

Ch. 2: Expectation
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2.31 The mean of the random sample mean is

3 m

i=1

E{MY}=%[E{Y1}+E{Y2}+---+E{Yn}]=

3=

and the variance is
/) 2) 1§ 2y _ OF
E{(My—-my)*} = E{[; Z ¥; —my)l} = 2 Z {X; —my)7} = o
i=1 i=1
since the crosscorrelations are zero. Consequently, we have convergence in Mean

Square of the sample mean to the probabilistic mean:

02
¥
lim E {(My —my)?} = llm — =0
n—yoo n
that is,
Lim. MY = my.
n—yoo
2.32 Since E{X;}=P(), i =1,2,..., and E([X;-P(A)]?} =c? then we have from

exercise 2.31
K 2
E{I=-p@)?} =2
n n
From the Bienaymé-Chebychev inequality, we have

K K 2
Prob{|—-P(A)I>e} < —IZ'E{I—"-—P(A)IZ} - LZG__
n € n e~ n

Therefore,
K 2
lim Prob {|— < lim —Z =0
n—yoo n—e g< N
or, equivalently,
lim Prob{ =1,
n—>o0

which proves the weak law of large numbers.
2.33 We are given
" n, Prob = o./n?
»7 0, Prob=1-o0/n%

Therefore,

] does not exist, Prob =0
b X, =) g, Prob = 1.

n
n—oo
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Thus, X,, converges to 0 with Probability = 1. On the other hand,
lim E{(X,—0)?} = lim n?P(s=n)=a#0.

n—eo n—yo

Hence, X,, does not converge in mean square.

Ch. 2: Expectation



Chapter 3

Introduction to Random Processes

3.1 To determine the empirical autocorrelation of the given square wave, we proceed as

follows. Let
A -1, -T12<t<0
pig)y = i

0t <T/2.
Then the square wave X (¢) can be expressed as
X@)= Y p(-nl)
n=-—o0
The empirical autocorrelation is given by
Ry(t) = <Xt +DX(t)>=<IY p(t +1—nT)p(t —mT)>.
n m
Letm =n + g, then
Ry(®) =Y <X p(t —nT +0)p (t —nT —qT)>.
q n
But Y p(t —nT +7)p(t —nT —qT') is periodic in ¢ with period T'; therefore we can

n
average over only one period rather than over all time:

T/2
Ry( =Y L j Y p(t —nT +T)p (t —nT —qT )dt.
q T—T/2 n
Leto =t — nT. Then
1 (n+1/2)T . oo
By@=Y~Y | plo+ipc—qldo=3 = [pc+1p(c-4T)do.

T \ T

q n (n-12)T q —o0

Let 6 — gT =t, then

Ry() = % Y [ p+t+qlp@ar = % Y, r, (54T,
q — q

where

r,@4 [p@+op@)r.

This result can be used to show graphically that IQX (7) is a periodic symmetrical triangle
wave with peak-to-peak amplitude of 27 and with zero average value.

The Random Processes Tutor e 35



36 ¢ Gardner & Chen

3.2 For the given sine wave, we have the empirical autocorrelation
T/2

Ry = lim — [ X(t+0X(0)de
Pope & b

T2

= lim EY f sin(2wf o[t +7T] + 0)sin(2wf o + Og)dt
Toe T 7,

T2

= lim — [ [-cos(2nf 1) — —cos@nf of +2nf gi-+200))dt
T—oo T—T/2 2 2

= —;—cos(an oT)-
Fourier transforming I?X (7) yields the empirical power spectral density

Sy(f) = J.Iéx(’t)e'iz"f"dt= J.[i—eizn(f"—f”+ %e—iZTE(fo-f-f)‘E]dT

= LI =F )+ 8 +fol.

3.3 It follows from (3.5) and the convolution theorem for Fourier transforms that
- 1~ =
Re(r = X (X (1),

because XT (=f) is the Fourier transform of X (-t). But, since X1 (7) is a real function,
then XT -f)= XT(f )". Therefore,

Re(F)r = % (P,

which is the desired result (3.4).

3.4 To derive the input-output relation (3.12) for autocorrelations, we follow the hint to
obtain (from (3.11))

—00

Y(@) = [h@X @ ~u)—duy) = [h@X (¢ —u)du,

—o0

and

Y +1) = [ h@)X (¢ +t—u)duy.

Substituting Y (¢ +7) and Y (¢) into (3.2) yields
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T/2
Ry(x) = lim ES Y (¢ +0)Y (t)dt
Y
Toe T 7p
T2 o
1
= lim — | [ h@h@X (+T1-u X (¢ —up)dudu, dt
Toe T rp s
= T2
= [[hwph@y [ 1im = | X +t-u)X @ —ude] dudus,
Y T— o0 T—T/2

Letting t — u, = v, the bracketed factor becomes
T/2—M2

im L [ X +Truy—u)X0)dy = Ry (+uy—uy).
Toe T 15y,

Therefore,

Ry @ = [ huh )Ry (v +up—uy)duiduy.

—o0

Letting s = u; — u, yields

Ry@= [ [his +uphupduy Ry(t—s)ds = [ r,(s)Ry (x—s)ds

—00 —00 —oo

= Ry () ® r;, (1),
where 1, (7) is defined in (3.13). This is the desired result (3.12).

3.5 Inverse Fourier transforming (3.9) with X replaced by Y yields

Ry = [ 8y (f)e®df.

Evaluating this equation at T = 0 and using (3.17) and (3.18) yields

T/2 oo
<P>=lim — [ Y20yt = Ry(0) = [Syw)dv,
Toe T 7y e

as desired. Using (3.14) with f replaced by v then yields

FHA2 A2
<P>= Jﬁx(v)dv+ j Sy (W)dv.
FAR ~FiA2

Thus, with A — 0, we have

%<P> — Sy (F) + Sy ().
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3.6

But, since IéX (1) is real and even, then fx(f ) is real and even and, therefore,

1 .
—<P> S ;
A = Sx(f)

which is the desired result (3.10).

To verify formula (3.9), we proceed as follows. We consider the time-variant finite
segment

REEO ISy
Xplf+u) =] o ] = 772

The time-variant correlogram, which is a generalization of the correlogram (3.5), is then
defined by

Ry(u, v & % [ Xp @ +u+ Xy ¢ +u)dt
TR-1|

=L | x@+usnpxe+uan
r =T/2

Using the generalization of (3.4),

%IXT(u,f)F: jRX(u, Tre T,

yields the time-averaged periodogram,

Z/2 oo 2/2
lim — j F%r G, f)Pdu = [ [ lim L[ Ry, Opdu] e
Z —> 00 e

-Z/2 oo Zn

- AR D

- ji [ tm L[ x(rurrmpxe+udu diei2ar
it 22~ Z g

ot T/2 17|
= J | Ry@ar e = j(l__i)R (De 2T,
2 -T2

Finally, taking the limit as T — oo yields
Z/2

$x(f)4 lim lim — f 7%, f)Pdu = lim f(l——')R (e g
T—o00 Z—>o0 2/2

= [Rye 2 ar,

—oo

which is the desired result (3.9).
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3.7 a) Let Y (¢) be the waveform at the output of the specified filter. Then the power spectral
density of the output waveform is given by

Sy(f) =Sx (FHH ()P,

where
H(f)= ————.
b +i2nf
Therefore,
X~ Ny
YO e

b) The empirical autocorrelation for the output Y (¢) is given by

N
Rm>1&mwmﬁ=£—m

The average power dissipated in a one-ohm resistor by this output voltage is
Ry(0)=Ny/2b.

3.8 From (3.13), we have (for the given rectangular impulse response) the finite
autocorrelation

T+tr, -T<t<0
rp(@ = | h@+v)a(v)dv = _ —
T-1, O0<1<T

T — |1, IT| T
Lo ltl>T,
which is a symmetrical triangle function. From (3.12), we obtain the output
autocorrelation:

Ry (1) = Ry (D) ® 1}, (7) = (1) ® 1, (%) = 1, (T).

3.9 a) The average value of Iéx (1) is given by
Ap) T/2
<Ry (1> = Jim — f lim — j X (¢ +0)X (t)ded.
g, T Lo
Interchanging the order of the two averaging operations yields
TI2 zn

Ry(®> = lim — J.X(t) lim — jX(tﬂ)dr dr
R
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T2
Iim — | X(@)m dt—m,
T—>wTJ/2()X X

as desired.

b) It follows from part a that the PSD §X(f ) contains the additive term th28(f )¢

3.10 From (3.31), we have the SNR ratio

SNRou: _ [ B 3
SNR;, | By

n

=81

for the noisy FM signal. Therefore, By = 3By. If By = 6By, then SNR,,, /SNR;, is
8 x 81 = 648.

3.11 The signal to be detected is given by
S(t) = cos(2rx 1008 )[u () —u (z — 1)1,

where u(¢) is the unit-step function. The impulse-response function of the filter can be
obtained from (3.33),

S —i2nfty
h(t)= J.H(f)eZZthfdf J”—S—Welznftdf
el N

= (IS¢ I af = 5(t0-1)

=cosrux100[1 =t D[u(1=t)~u(=¢)], for ty=1.

The maximized SNR is, from (3.34),
1

2
R max = J i) - o 9= _[ Is (t)|%dt = JCOSZ(ZEXIOOt)dt ==
- Sn () e &

If the sine wave amplitude were doubled, the SNR .. would be quadrupled. If the
frequency were doubled, the SNR ., would remain the same.

3.12 Since Sy (f) = N and
So

Ss(f) = | Rsme M dr= ————,
s i s @nf 1o’ + 1

then it follows from (3.40) that the transfer function for the optimum filter for this signal
in white noise is given by
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So/Ng+S o)
1+ @rf 1) No/Ng+Sp)

H(f)=

which is a low pass filter with cutoff frequency fq = (1/1p)[1+S/Nol"% When
So/Ng— oo, fg—=ocand H(f) — 1 forall f.

The minimized MSE is, from (3.41), given by

MSE. _]" SO, _]" SN o/(SotN o)
LS5 (f) + S () 21+ @uft)™No/(Se+No)

which approaches zero as S /Ny grows without bound.

3.13 It follows from (3.44) that (using 1€X 1) = IéX (7)) the two coefficients {hg, ~{} of the
second order predictor are given by the solution to the following set of two simultaneous
equations:

Ry (O + Ry (T9/2)h 1 = Ry (1y/2) and Ry (tg/2)ho + Ry (01 = Ry (Tp).

The solution to these equations is

1 - Py (19 Bx (To) — P£(To/2)
———— and h;= -
1 — pg(tg/2) 1~ Pg(te/2)
where Py (T) 2 Ry (1)/ Ry (0). It follows from (3.45) that the minimized mean squared
prediction error is given by

MSE i, = Rx O)[1 — hoPx (19/2) = h1Px (To)].

ho=Px(To/2)

Using IéX(’I:) = (52exp{—|’5[/‘co}, we obtain s = e, hy=0, Py(ty/2) = \We , and
Px (tp) = l/e. Therefore,
MSEmin = 62[1 - lle].

Although, in general, the MSE ;, would decrease as the order n of the predictor
increases, this is not so for the process in this exercise. In fact, the smallest possible
MSE _;, is obtainable with only n = 1 for this process.



Chapter 4

Mean and Autocorrelation

4.1 Bernoulli Process: Given
P{X,=1}=p and P({X,=0}=1-p,
we obtain

my(n)=E{X

n

}=P{X,=1}1+P(X,=0}0=p
and
1% +0%(1-p)=p, M1=ny

Rx(nl, }12) = E{X,“an} = 5
E{an}E{an}zp ’ n1¢n2a

and also

p(=p), ny=n,
Kx (ny, ny) = Ry (ny, ny) — my (nmy (ny) = 0, ny#n,

Binomial Counting Process: From (4.14), we obtain
n n
my(n)=E{Y,}=E{Y X;} =Y E{X;} =2, p =np.
i=1 i=1 i=1

Using this result yields

ny np ny np

Ky(ny, np) =33 E{X;X;} - (np)nyp) =33 Kx(, Jj)

i=1j=1 i=1j=1

n; ny nj
= 3 Ky, )+ 33 Ky(i, /), ni<ny
i=j=1 i=1j=1
J#i
=n1p(l—P)+Oa nlan'
Similarly,
KY(nl, n2)=n2p(1_p)s n2sn1'
Thus,

Ky (ny, ny) =p(1-p)min{n,, n,}.
Random-Walk Process: From (4.20), we have Z; = 2(X; —1/2) and, therefore,
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n
=Y 7 =2, —n

i=1

74

n

Thus,
my(n)=E{W,}=2E{Y,} -n =n(2p-1)
and
Ky (ny, ny) = E{[W, —my (n )IW,,—my (n,)]}
= E{[2Y, —n —n;(2p = DI[2Y, —ny—ny(2p — 1)1}
=4E{(Y,,—np){¥,,—n,p)} = 4Ky(ny, ny)

=4p(1-p)min{ny, n,}.

4.2 Using the notation E {Z;} =m, and Var{Z;} = c2 for the independent random step
sizes {Z;}, we obtain the following mean and variance for the generalized random walk
process:

my(n) = E(W,} = S E{Z;} = nmy
i=1

Ky (ny, ny) = E{[W,, —my (nDI[W,,—my (n,)]}

ni; np
=E{ X3 Z-mz)Zj—mz)}
i=lj=1
n n; na
i,j=1 i=1 Jj=1
J#
n
=EGZZ=n1022, nISnz.
i=1
Similarly,
KW(nl,n2)=n2622, nzﬁnl.
Thus,
Ky (ny, ny) = 67 min{ny, ny}.

These results are essentially the same as those in (4.22) and (4.23) for the fixed-step-size
random walk process, where m, and 62 take on specific values.

4.3 Using (4.19), we can represent the process U, by

n oo
U, = Z Z; = Z h(n—-i)Z;,

i=n—-m [=—00
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where

al L 0<ism
h() = 0, otherwise.

Therefore, we obtain the mean

My)=S h(u—iyng =my; 3 h(j)=@p—1)m+1).

[=—o0 Jj==00

Also, we obtain the covariance

Ky(ny, ny) = E{[Uy, —mynpllU,,—my(nyl}

oo

=3 3 hG-nphG-nKzG, ).

i=—co j=—oo

But
TRV T e
KZ(i,j)={p0(1) +(A-p)D)* = [pM+A-p)=D]*=4p(1-p),
where
s all k=0
=10, k=20
Consequently,
Ky n)=4p(-p) 3 3 hi—nph(—-nd_;
j=—so jm—co
=4p(1—p)i (G —nh( —ny)
=4p(1—p) 3 h(+n,-nYh(j) = 4p(L=p)ry,(n,—n),
j=—oo
where

5 2 ) ) m+1-lkl,
rpk)S X h(G+ER() = 0,

j:-—oa

(See also the solution method used for exercise 4.4.)

4.4 The mean of the moving average process Y, is given by

N-1 N-1
my =E{Yn}=E{Z Xy il= Z E{X,}=
i=0 i=0

Ch. 4: Mean and Autocorrelation

kIl <m

otherwise.

Z my = me.
i=0

i=j

i #]j
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For 0 £ m < N, the autocorrelation of Y,, is given by

N-1 N-1
RY(n+m’n)=E{Yn+mYn}=E{ Z Xn+m—i 2 Xn—j}
i=0

Similarly,

Thus,

I

E{

i=j

j=0
n+m n n+m n
b2 X, X Xl= 2 > E{XX;)
i=n+m-N+1 j=n—=N+1 i=n+m-N+1 j=n-N+1
n 5 n+m n
Y EXH+ Y > EX)EX), m=20
=n+m-N+1 i=n+m—-N+1 j=n-N+1

i#]

= (N —m)ocZ+m?) + (N>~N +m)m¢ = (N —m)c§ + NZm.

Ry(n+m,n) =N +m)cg + N’m?, m <0.

Ry(n+m,n)=

(N -lm)o} + Nmy)?, 0<Iml<N

(Nmy Y2, lm| > N.

For r >0, r'*! either grows or decays monotonically, depending on whether r > 1 or

r < 1. For r < 0, the magnitude |r
oscillates from positive for even & to negative for odd k. The only way the auto-

of r k!

&l = | |*! behaves the same way; however, the sign

correlation can oscillate is if the sample paths themselves exhibit oscillatory behavior.
For example, if Y,, = X, cos(nn +©), where © is independent of {X,,} and uniformly dis-
tributed over [0, 2m), then

and

Ry (k) = %RX (k)cos(nk ) =

Yl‘l

X, cos(9), n even
" | =X, cos(0), n odd.

Using the notation E {A2} = E {B?} = 62 and PDn(w) = E {e'®?} we have for this sine

wave process



46 ¢ Gardner & Chen

Ry (21, t5) = E {(A cosQt  + B sin€2t 1 )(A cosQt , + B sinfdt ) }
= E {A%c0sQt ;cosQt, + B%sinQ¢ ;sinQt¢, + AB cosQt ;sinQt , + BA cosQt,sinQt 1}
= 6%E {cosQt ;cosQt, + sinQt ;sinQt, }
= 6%E {cos[Q(t | —5)]} = 6?Re{®(t; —1,)}.
Since E {X(¢t)} =0, then Ry (¢{, t9) = Kx (¢, t5).

4.7 The mean of the random periodic process X (¢) is given by

my(t) =E{X(®)} =E{E{X()|©}}

P
=E{ Y E {Cp} exp{ip(wgt +©)}} (since {Cp} and © are indpendent)
p=-P
P . T %f P F
= Y E{C,)}e?™ —[e?% 0= Y E{(C,}e"™ x0=0.
p=-P g 2n 0 p=-P P

The autocorrelation of X (¢) is given by
Ry(t, 1) = E{X(t )X (1)} = E{E{X ()X (t5)1©}}

P
=E{E{ Y, CpC,eXp{ip(DOtl+ir030t2+i(p+r)®}IG)}}
p.r=-P

=E{ E“ E{CpC,}exp{i[pwotl+rm0t2+(p+r)®]}

p,r=—P
P 2n
= Y E{C,C,} exp{i(pwoti+rmpty)} —l——j.exp{i(p +7)0}d6.
p,r=-P 2n 0

Since the integral equals zero except when p = —r, then we obtain (using C_, = C; )

P :
Ry(ty, 1= 3, E{IC, P)e? ™7™,
p=-P

4.8 Since Y (¢t) and @ are independent in Section 4.2.8, then we have, for the amplitude-
modulated sine wave Z(¢), the mean

E{Z(t)} = E{Y(D)]}E {sin(wgt + D)} = my (¢ )E {sin(wy? +DP)}
and the autocorrelation
Ry(t1, to) =E{Z(t)Z(ty)} = E{Y ()Y (t,)}E {sin(wyt ; + P)sin(wyt 5 + D) }
= RY ([1, t2)%E {COS((Oo[tl —tz]) = COS((D()[tl +t2] +2¢)}

= %RY (tl, t2)[COS((D0[t1 - tz]) -FE {COS((O()[[ 1T+ fz] + 2(I))}]
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If @ is uniformly distributed on the interval [-r, ), then we obtain

oo T

E {sin(og +®)} = [ sin(ay? +0)f ¢(0)d = %J.sin(wot +0)d =0

—o0

and
E {cos(@olt; — 1] +2®)) = [ cos(@plt;—t51+20)f (®)d 0
1 '
= E‘[cos(coo[tl —t,]+2¢)d0 = 0.
Therefore,
my(t) = my(t)0 =0
and

RZ(tl’ tz) = %RY(tl’ t2)[COS(O)0[t1 —tz])“'O] = %Ry(tl, tz)COS(mo[tl —tz]).

4.9 Since X (t) and Z(t) are statistically independent, we then have
Ry =E{Y ()Y@t} =E{X@DZE DX DZ (1)}
=E{(X@DX@)IE{Z(t)Z(t5)} = RxR;.

4.10 For the sampled-and-held noise process, since V(nT') and V([n +k]T) are independent
for £ # 0 and have zero mean values, then we obtain

Kx(ty, 1) = E{[X(t)-E{XD}IX () -E{X(2)}1}

E{ f'j [V(T)—E {V(uT)}h(t{—nT)

Hn=--00

X
m

[V (nT)—E{V(mT)}h(ty—mT)}

o

S E(VOT)WGHT)h(t = nTYh (ty—mT)

Y ogh(t;—nT)h(ty—nT).

n=-—oo

Also, E{X(t)} =0 and, therefore, Ky (¢, t;) = Ry (t{, t;). From (2.45) and using the
above result, we obtain E {Y (¢)} = 0 and, therefore,

Ky(ty, 1) = E{Y (1 )Y (1)} = E{E{Y (t))Y () | ©}}



48 ¢ Gardner & Chen

= E{Ry(t,-0, 1,-0)} = [Ry (-6, 1,~6)f o(®)d 6

—o0

T2
= —;—c& > [ h(t,-nT -0)h(t,~nT —0)d0
n=-—oo —T/2
t,—nT +T/2

—20t 3 | b=+ 0h@do,  0=tp-nT -0

n=—oco ty—nT =T/2

2
= —cV jh(z1—¢2+¢)h(¢)d¢ ———-)h(tl—t2)

4.11 a) For the pulse-code-modulation process X (¢), we can show that the mean is zero and,
therefore, the autocovariance equals the autocorrelation:

oo

Ky(t, 1) =E{X@DX@)}=E{ Y  A,A,p(t,—nT)p(,—mT)}

n,m=-—oo
= Y E{ANp(t,—nT)p(t,—nT)
n=-—co
+ Y E{A,}E{A,., }p@t=nT)p@,—nT =rT)
r#£0 n=—c

Z p=nT)p(ty—nT).
Hn=-—o0
b) For the randomly delayed version of the pulse-code-modulation process, we have the
model

Y$)=X(t-©)= 3 Ap(t-nT—0).

nm=—o0

Therefore,

Ry(ty,ty) = E{Y( )Y (1)} =E{E{Y ()Y (tp) |O}}

=E({ i p(t1—nT —O)p (t,—nT —©)}

T2

= 3 < [ pe,-nT -8)p(t,~nT —0)d0
n=-—oco T—T/2

oo

—jp(tl—t2+s)p(s)ds = 1rp(tl—tz).
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4.12 The autocorrelation of the quadrature-amplitude-modulated process Y (¢) is given by
Ry(ty, 1) =E{Y ()Y ()}
= E {[X (¢ )cos(wgt 1) — Z (¢ 1)sin(wg? 1)1[X (2 5)cos(wyt 2) — Z (2 5)sin(wgr )1}
= E{X ()X (t5)}cos(wyt 1 )cos(wyt ) + E {Z(t1)Z (t5)}sin(ot )sin(myt ;)
= Ry (¢, to)cos(mgt 1)cos(Wyt ) + Ry (¢ 1, t2)sin(wgf 1)sin(wpt ).
If Ry (ty, ty) =Rz (¢, ty) = R(¢t;—1t,), then we have
Ry (ty, 1) = R (t, —t;)[cos(wgt 1 )cos(mgt 5) + sin(wgt 1)sin(wyt ;)]

= R(tl —tz)COS((Do[tl—tz]) = RY(tl—tZ)'

4.13 Using + for Y and — for Y,, the autocorrelation functions are given by
Ry(ty, tp) = E{Y ()Y (15)}
=E{[X(1) £ Z(@IX (1) £ Z(1x)]}
=E{X@)X@}+E{Z@DZ(t} T E{X(DZ(1)} £ E{Z()X (1)}

=Rx(t1, tz) + RZ(tl’ tz) i mx(tl)mz(tz) + mz(ll)mx(tz).

The cross-correlation function is given by
Ryy,(t1; 1) = E{Y ()Y (t)} = E{[X (1) +Z (¢ DIX (1) - Z (1]}
=Ry (ty, t9) = Rz (11, t9) — my (¢ )mz(15) + my (¢t )my (t5).
When Ry = R; =R and my = m; = m, then the preceding results simplify to
Ry(ty, t9) =2[R (¢, ty) £ m(tm(ty)]
and
Ry y,(t1, 17) = 0.

Thus, the sum and difference processes for two i.i.d. processes are orthogonal to each
other and, since the difference process has zero mean, they are also uncorrelated with
each other.

4.14 The autocorrelation of Y (¢) = X (¢) — X (¢—T) is given by
Ry(ty, 1) = E{Y(t )Y (19)} = E{[X (1)) - X (t;- DX (1) - X (1,~T)]}
=Ry(ty, t9) + Ry (=T, t,—T) =Ry (ty, t,~T) — Ry (t;-T, t5)
= 2Ry (t1—1y) = Rx(t;—1,+T) — Ry (ty—1,-T).
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4.15 a) For the pulse-position-modulated signal, we have the model

X@)= 3 pt-nT—P,),

n==—oco

where p(¢) is the zero-position pulse and {P, } are independent of each other and
identically distributed.

b) We obtain the mean as follows:

my@)=E{ 3 p(t—nT -P,)]

[ 3 pe-nT-wype)du = 3 5e—nT),

where
PO APH® fpt).
Thus,
my(+T) = i

FU+T=nT)= 3 p(t —mT) = my(),

m=n-—1
m=—co
and my (¢) is, therefore, periodic. Furthermore, if

0<p<T-A
fp@)=9 T -A" F
07

otherwise
and
1, 0<t <A
pt) = 0, otherwise ,
then
. T—A . t
Ft) = —— [ p-wydu = [ padu
T -A g T—At_(T_A)
1 t
d ?
T—A! H 0<t <A
A
=41 [au, A<t <T A
T-A>
A
! [ au, T-A<t<T
T—At—(T—A)
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s 0<t <A
T-A

. 0<t<T-A
T —A
1=l F=AZf eT,
T = &

¢) For the phase-randomized version of the signal, we have the model

X(t) = f: p(t—nT =P, —©),

n=-—oo

where

1/T, -T1R2<0<T/2
fe® = 0, otherwise.

Therefore, the autocorrelation function is given by

Ry(t+1T, t)=E{X(@+DX@)} =E{E{X(t+1)X ()0}

n,m=-—oo

E{E{ ¥ p@+1-nT—P,-@)p(t—mT -P, —0)|0})

n=—c0

—E{ Y E{p(t+1-nT P, —O)p(t -nT —P, )]0}

r#0 n=-oo

+E(Y S E{p(t+t-nT ~P,-O)p @ ~nT —T-P,,, —0)|0}}

(usingr =m —n).
We have

E{ Y E{p(t+1-nT —P,~®)p(t —nT —P, —©) | 0}}

n=-—oo

T-A
=E{ ¥ [ Pt +1=nT —u —@)p (t =T —u —@)du | ©}
T -A
1 T-A = 1 T/2
= Y —= | pt+1-nT —u—0)p(t —nT —u —0)d 6du
r-Ag n=-°°T—J/2
T-A oo

1 1 1
= T — A -(’; F_J;p(v +T)P(V)dva’u = Fr-p(,-c),
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and we have

E{(Y 3 E{p(t+t—nT-P,-@p(t—nT —1T -P,,, -©)|0}}
r#0 n=—ce

oo
oo

=E{Y X _[p(t+’c—nT—-u —@)fp(u)dujp(t—nT—rT—v —O©)fp(v)dv}

r#0 n=—o —oo —c0
T2
=3 _”fp(u)fp(v)[ Y — | p+t—nT —u—0)p(t —nT ~rT —v —0)d O]dud
r#£0 —o n——mT—T/Z

Y, H fp)fp() —Jp(s +T+v —u +rT)p(s)ds dudv

r#0 —oo

_Z ,U Fp@)fp)r,(x+rT +v —u)dudv

r¢0 —oo

Z Ir (t+rT +2) pr(u)fp(z+u)dudz

r;tO —co

— Z _[r (t+1T +2)rs(z)dz

r;tO —o0

- Z jr (t+1T=2)rp(z)dz  (since ry () is even)

r#O —o0

——Zr (’C+rT)®rf(‘C+rT)— Zr (t-nT)® r;(t—nT).

r;tO n¢0

Therefore, we have the desired result (4.43).

4.16 a) For the pulse-width-modulated signal, we have the model

xo= ¥ o),

n=—co n

where
A 1, 0t <1
p@)= 0, otherwise

and {W, } are independent of each other and identically distributed.
b) The mean of X (¢) is given by

mx(r>—I 3 n(is )fw<w>dw— Y q(t—nT),

—oo n=—o0 n=-—oo
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where

g@) & [ paiw)fy (wdw.

—oo

Also,

my(t+T)= 3 qG+T-nT)= 3 q@-mT)=myg(t), m=n—1.

n=-—oco m=—oo
Thus, my (¢) is periodic.
c) For the phase-randomized version of the signal, we have the model

X()= 3 p(t_';vﬂ)-

n

n=-—oo
Therefore, the autocorrelation of X (¢) is given by

Ry(t+1,t)=E{E{X(¢t+1)X(¢)|0}}

=E{E{ i p(t+‘c—nT—®)p(t—-mT—®)|®}}

n,m=-oo Wn Wm
i t+ T-0© t—nT —©
-8{ ¥ Bl =" (=) 8l
n=—oco n n

+E{2 i E{p(t+’c;‘;1T—®)p(t—nY‘;/—rT—®)|®}}
r#0 n=—oo n

n+r

(using r =m —n).
We have

E{ 5 Ep(I=0), (12 =9) ey

n

n=-—co
oo

=E( 3 [p(FEE=Cp (A0 wyaw)

w

N=—c0 —oo

T/2

- |1 t+o—dl —H8 f—nl —8
— d
T 7 | p(EEE 0 fy o

= 2 I[P (D) (£)d0 sy 0w

]
{;;.8

w

— 8

p+T/wip(WAVY fyWw)dw, y=0/w

~1|~

3

~3|~

;;-—.3 §—38

1
%)wfw(w)dw = —:’:E{rp (%)W},
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and we have
ot t+1—-nT -® t—nl —rT —-©
EIE X Ep(———p=5r——) e}l
r#0 n=—oo n n+r

E(S 5 [ p(EET=0 i [p(E2I=T=8)i)

r#0 n=—c —co

co T2
=3 [[ = 7 ] o2 (=0 a1, oy )y
r#0 —co n=-oco —T/2
Z‘YIT 2 _wa(u)fw(v) J (S+‘l:+rT) ( )ds dudv

r#0 —o

=% = [ Jp(”””)fww)du fp( My )dv ds

r#0 —co —co

== fq(s+r+rT>q<s>ds, q@) = E{p(t/W))

r#0 —o

N -

=—~ > F (’r+rT)———2r (t—nT).

r#0 n#O

Therefore, we have the desired result (4.45).
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Chapter 5

Classes of Random Processes

5.1 A random-amplitude sine wave can be modeled as
X (1) = Acos(oyt +6),
where A is a Gaussian random variable.
a) Consider the linear combination
n
Z= 2 aiX(ti) =AC,
i=1

where

¢ =Y, a;cos(gt; +0),

I

1

i

which is a non-random constant. Since A is a Gaussian random variable, then Z is a
Gaussian random variable for all n, {a; }{" and {#; }{". Thus, X (¢) is a Gaussian process.

b) Let
X=[X(@) X X@)]I
= A[cos(wgt;+0) cos(wyt,+0) - - - cos(wgt, +6) ¥ 2Ar.
Then
Ky = E {[X—E {X}][X-E {X}I'} = ofrr”.
Since for every vector a, the vector
b=Kxa=dr,

where d is a constant, is in a space of dimension one (spanned by r), then the range
space of Ky has dimension equal to unity, and, therefore, Kx has rank equal to unity.

¢) At and t,, we have (ignoring the time points at which X (z) = 0)

X (1) =Acos(wgt+6)=cA
)
X(ty) = Acos(gt,+0) = —X ().
€1
Thus, we obtain from (1.34)

1 2
Fxepx ™1 ¥2) = F“ﬂ-; ———;—1—] }S(Xz——m)-
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5.2 Consider the linear combination

S 4 VeD)h(t;-mT) = ¢,V T,

1 m=—oo m=—co

Z=YaX() =

n
=1 i=

where

&

M=

m
1

1

which is a nonrandom constant for each m. Thus, Z is a linear combination of jointly
Gaussian random variables {V (mT)} and is, therefore, a Gaussian random variable. Thus
X () is a Gaussian random process.

5.3 a) For r =4, we obtain from (5.58)
E{X X, X:X,} = E{X X,}E{X3X,} + E{X X3}E{X,X4} + E{X X,JE{X,X3}.

Now, let X; =X(;),i=1,...,4; then from the above we obtain (5.59) since
E{X(#;)X(t;)} = Kx(t;, t;) for a zero-mean process.

b) For n =4, from (5.56) and (2.38) we have

(I)((Dl, 2 B (04) = exp Z ®; © KX(tl’ j)}
i,j=1
For k; =1, i=1, ..., 4 in the left member of (5.57), we obtain
afl)(co1, e ey (1)4) 1 4 1 4
: j:
Sk 2 ('OjKX(tl’ tj)q)(wl’ e e ey (1)4)
j=1

*D(wy, . . . , Wy)
00,0,

Ky (t1, 1)D(@y, . . ., 0O

4 4
+ 3 0Ky (1, 1)) X 0;Kx (g, 1;)P(0y, . . ., )
j=1 i=1

PD(®,, . . ., Wy)
0®;00,00;

4
=Kx(t1, 1) Y, 0Ky (t3, 1;)D(0, . . ., ©f)
j=1

4
+ Ky (11, t3)Y, 0;Kx (19, t;)P(0, . . ., 0y)
i=1

4
+ Ky (t, 13) Y, 0;Kx (11, 1;)P(0y, . . ., ©y)
j=1
0wy, . .., wy)
0W;0M,0030(M,

=Ky (t1, 1)Ky (13, t)D(O, . . . , ©)
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4 4
= Kx(t1, 1) Y, 0Ky (3, 1;) Y, 0;Kx (g, ;)P0 - . ., 0y)
j=1 i=1

+ Kx (t1, t3)Kx (o, t)P(®, . . ., Wy)

4 4
“Kx(tl, f3)z Cl)in(tz, ti)z (Dij([4, tj)(I)((,ol, EE (D4)
i=l j=1

+ Ky (t, 1)Ky (t1, )P0y, . . ., ©)

4 4
—Kx(ty, 13) Y, 0Ky (ty, t;) 3 0;Kx(tg t;)P(0, . . ., 0y).
j=1 i=1

Thus, (5.57) yields
1 84(1)(601, p— (04) }

E{X{DX{DX (t3)X =m(1,1,1,1)=—
X)X (X (t3)X (19)} = m( ) P et NSRRI

=Ky (t1, 1)Ky (t3, tg) + Kx(t, 13)Kx (0, 14) + Kx (21, t DKy (15, £3),

since ©(0, 0, 0, 0) = 1.

54 Wedenote X(;) by X; fori =1,...,4 and
K 8 E{(X; —m)X; —m})} = R;j — mym;,,
where
R; AE{X,X;} and m; 8E(X;}.
Since the third-order moment for zero-mean jointly Gaussian random variables are zero,
E {(X; =m;)(X; —m )X —m;)} =0, then
E {XinXk} = m,-Rjk + ijik + mkR,-j - Zm,-mjmk. *)
The fourth-order moments for zero-mean jointly Gaussian random variables are given by
E{(X; “mi)(Xj —mj)(Xk —-m )X, —my)} = E{X; (Xj —mj)(Xk —m )X, —my)} (**)
=E{X;X; X, X;} —mE{X;X; X} } - mE{X;X;X;} —m;E{X;X; X}
+ mkmlRij + mjm,Rik + m,mkRij — m;m;mymy
=E {XinXkX,} - m,m,-Rjk - m,ij,-k - m,mkR,-j
—mym;Ry; — mym;Ry — mjm; Ry + Smym;myimy.

From exercise 5.3, we know that (**) is also equal to
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Ryj —mym; )Ry —myemy) + Ry —mymy YRy —mymy) + Ry —mmy )Ry —mmy )
=R;jRy + Ry Ry + RyRy —mym;Ryy — mpmR;;
—m;m Ry — mymy Ry — mymy Ry — mymyRy + 3m;m;jmym;.
Thus, we have
E{X;X; X X;} =R;jRy + Ry R + RyRjy — 2mym;mymy.
5.5 The mean of Y (¢) = X(t)X (¢ —A) is
my = E{X ()X (t —=A)} = Ry (A) = Ky (A) + m§?.
Using the result from exercise 5.4, we obtain the autocorrelation for Y (¢),
Ry(M)=E{Y+DY)} =E{X+1)X (¢ +T1-A)X @)X (1 —A)}
=E{X(@+DX(@+T1-AE{XOXE-AD}+E{XE+DX@)IE{XE+T-A)X (¢ —-A)}
+E{X@+0DX (@ -ANIE{X(+T-A)X (1)}
—2E{(Xt+DIE{X(@+T-ANIE{X@®)}IE{X(-A)}
= RHA) + RZ(T) + Ry (T+ ARy (T—A) — 2my.

56 LetZ(t)=X@),thenY(@)=X@)Z(t)= X?'(t) and, from (5.59), we obtain
Ry(ty, 12) = E{Y (1Y (1)} = E (XXt )X (r)}
=Ky (t1, 1)Ky (2 1) + 2Kt 1, )
=Ry (b4 1Ry (tos 1) + 2R (ry; 14l
From exercise 4.9 where X (¢) and Z (¢) are independent, we obtain
Ry ey, t5) = Ryt toIRatys Bn) = RfEin 1)

This illustrates that the result in exercise 4.9 is invalid when X(¢z) and Z(¢) are
dependent.

5.7 a) Both phase-randomized processes in Sections 4.2.4 and 4.2.6 can be put into the form
Y(#)=X@#+0®), where © is uniformly distributed over (-T/2, T/2]. Thus, the
definition of conditional probability density yields

Fro0) = | Free 10 o®d0 = [ fx (.o )f o0)d0

T/2

1
= = | Frero0)ab.
-T2
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Hence, if X(¢) is Gaussian and nonstationary so that the particular Gaussian prob-
ability density fx g varies in 8 over at least some subintervals of (-T'/2, T/2], then
fy@) is a (continuous) uniform additive mixture of non-identical Gaussian functions
and, therefore, cannot itself be Gaussian. For example, it is easy to show that

—;—fX(Hel) + %fx(ﬁez) cannot be Gaussian unless fx .0, = fx(+6,):
b) Since
Y (1) = Asin(oy +©) = A sin(wyt )cos(®) + A cos(mgt )sin(®)
= Wsin(wgt) + Zcos(wg?),

where W and Z are i.id. Gaussian random variables and are therefore jointly
Gaussian, then we know from the definition of jointly Gaussian random variables that
Y(¢) is a Gaussian random variable for each value of 7. To prove that Y (¢) is a
Gaussian process, we must prove that

A n
XA% 4Y()
i=1
is a Gaussian random variable for every n, every set of n times {¢ }{ and every set of

n real numbers {qg; }{. Substitution of the expression for Y (¢) into the definition of X
yields

X =oW + BZ,

where

n n
o= asin(®g;) and PB= 3 a;cos(oy;).
i=1 i=l

Since we know that W and Z are jointly Gaussian, then clearly X is a Gaussian
random variable. Therefore, Y (¢) is a Gaussian process.

5.8 From exercise 1.12d we know that if X and Y are jointly Gaussian, then XY is
Gaussian with parameters o and §” given by

v . YO-PB
B —B+T

o = a1-y2
LetY =X(¢;) and X = X(¢,), and
B=E{X}=E{X(t) =my(ty)
02 = E{(X —B)?} = E{[X (1)) —my ()%} = 63(t2)
B'=E{Y}=E{X(t)} =mx(ty)
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a?=E{(¥ -2} = E{[X(t))—-my (]} = 63(t})
_ E{(X_B)(Y_B’)} _ E{[X(tz)—mx(fz)][X(tl)_mX(tl)]}

v oo Ox (t2)0x (1)
Kx(t1, 1)
" oy (t)ox (i)’
then
” Kx(t1, 9
E{Xt)IX@)}=E{XIY}=B"=my(ty) + —-é;{(;l)—[x(fl)—mx(ﬁ)]-

5.9 Since dg(X)/dX = 28(X), then

{ dg(X) dg(X,)
dX, dX,

b= [ 4800800, 1, xo)d ey

4
= 4fxx,(0, 0) = PR
where fx x,(x1, X5) is the bivariate Gaussian density (2.27) with zero means and equal
variances. Therefore, (5.61) yields
dRy
dp

1
V1-p?

Integrating this result with respect to p yields

=&
0

)
Ry = =sin!(p).
p = P

Since
X
g(x) = (%)“2] exp{—z2/202}dz
oL 0
then
dgd(;) _ (niz )72 expi-x2/202].
Applying (1.36) for Y = g (X) yields
fx &) 1 2 2 12
= = —————exp{—x“/2Ry (0)} + (—— exp{—x2/20?
Fy®) = ST A T p{ % (0)) (mz) p{—x }
1 o 2y 1 1 1
e ex -—)} == for o?=Ry(0).
2 VRS p{ 2(RX(O) =3 x (0)

Ch. 5: Classes of Random Processes



The Random Processes Tutor e 61

Also, since g (o) = 1, g(—) = -1, and g(-) is a monotonically increasing function, then
the range of Y = g(X) is Y| < 1. Thus, we have

172, lyl<l
fro) = 0, otherwise.

5.10 a) Given
+1, X =0
8X)=1_1, x<o,
we obtain dg/dX =28(X). Letting X =X (¢ +7), X, =X (), Y1 =X, Y, =gX>),
and applying Price’s theorem (exercise 5.9), we obtain

dRy
——— =Ry (0)E {(1)25(X »)}

dp
- RX(O)2]:5(x) L xpl- x? }dx = 2Ry 0)/T.
S A2mRy (0) 2Ry (0)
Thus,
. R o
Ry = J-\/ZRX(O)/n dp = p\2R, (0)/ Tt = x (@ \2R; (0)/ .
Rx (0)

Hence,

E{X(+1)g[X ()]} = cRx (D),
where ¢ = 2/tRy (0).
b) For an arbitrary nonlinearity g (-), the method of part a yields

dRy _ dg[X(®)]\ _
= —RX<0)E{T(,)}—cRx(0>,

where ¢ = E {dg[X (¢)]/dX (¢)}. Thus,
E{X(t+71)g[X ()]} =Ry = cRx(0)p = cRx (7).

5.11 Let X,,,; be the position at time n+1 and Z, be the independent random error at time 7.
Then, we have

Xn+1 = aXn +Zn.
Thus, since Z, is independent of X;, i =n,n—1,..., 1, we have
Ixalx, . Gty - o X)) = fz, (0 —axy) = fxix, %41 1%)-

Hence X,, is Markov process.
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512 Let Pjg=Pg =r.Then Poy=P;;=1—-r =¢q and
p=[ 7]
r g
The eigenvalues and eigenvectors of P are found to be
M=1, x;=[1N2 1IN2TT
M=1-2r, x,=[1N2 —1N277,

and P can be expressed in terms of the singular value decomposition

b [ ]Pl OHX{} INZ N2 |1 0 || 1n2 142
=1 X1 X = _ _ _ 5
1 0 % |3 N2 =1N2 || 0 1=2r || 1N2 —112

Furthermore, P” can be expressed as

A0 || x]
P" = [xl XZH 01 MIHxH = AP xx{ + AJ xpx].

Thus, (5.13) becomes
Pn = Pn PO = (}\,ln X1X1T + )\/ﬁl X2X2T )PO
Hence, when r = 1/2, then A, = 0 and, therefore,

1/2 172

1/2 172

Thus, the state is stationary. When r > 1/2, then -1 < A, < 0 and A therefore alternates
in sign and approaches zero. When r < 1/2, then 0 < A, < 1 and A3 is therefore positive
but still approaches zero. Hence, for r # 1/2,

1/2 172
P, > xx/Py= P,.
12 1/2

Thus, the state is asymptotically stationary. Observe that since the elements of P, are

P =% Py { } P, forall n >0;

nonnegative, then P, cannot be orthogonal to x;. However, if Py (1) = Py (0), then Py is
orthogonal to x,. In this case, we see that

P, = A\ x;x{ + A% x,x] )Py = A xx[P, forall n >0,

regardless of the value of 7. Thus, this particular initial state distribution renders the state
stationary regardless of the state transition probability 7.

5.13 We have the model
Xn = Xn—l + Zn—l + Wn—l’

n

where
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W,

n—

0, previous service incomplete, prob =1 —p
1= | —1, previous service complete, prob = p.

Consequently,
Prob{X, =k, X,_1=k,_1, X, 2=k, 0, ..., X1 =kq}
= Prob {[(Z,_; = ky = ky—1) O (W, = 0]
U [Z,oy = ky = kg + 1) OV (W, = =D]).

Since this probability does not depend on k, o, k, 3, ..., k;, then X, is a Markov
process. We can obtain a more explicit expression for this transition probability as
follows:
Prob{X, =k,|X,_1 =k,_1} = Pz(k, —k,_)Py 0) + Pz (k, —k,_;+ )Py (-1)
kk,,—k,,_l )\‘k,,—k,l_ﬁ']
=(l-p)————— e+ p——€"
(k, —k,_1)! (k, =k, _1+1)!
xkn _kn—l Y )\‘p
= AT T Miopy— 2B,
(ky =k ! ky, =k, 1+1

5.14 During the (n — 1)st service period, the device in service will either fail or not; therefore,
given the age, X,,_; = k,_;, of the device in service at time n —1, the age of the device
in service at time » is one of two values:

k,_1+1, prob =1 — Pk,
Xy |X"_1 = ku-1) = 1; prob = Dk,
It is clear from the problem statement that knowing the ages X, , X, _3 ... X at earlier

times will have no effect on this conditional probability distribution. Thus, this is a
Markov process. The transition probabilities are
1 _pkn—l’ kn = kn—l +1
P X,y = ky 1Xyq = Ky_1) =7 Pr,.p» ky =1

0, otherwise.

5.15 @) From (5.6) we obtain

.[fX )X )X 31X D x (1)1x ()X 2% Dedx

—o0
o

= J.fx(h)lx (tz)X(tl)(x?, [x0, X l)fX(tz)!X(tl)(x2|x Ddx .

—oo
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But then by using the definition of conditional probability density

X ()X ()X (1) = [X(t3)1X (t)]1X (¢1), this latter expression becomes

J.fX(t3)X(tz)|X(t1)(x3v Xolx )dxy = Fxylx ) *31x 1)

—00

This verifies (5.9). The discrete-distribution counterpart of (5.9) is given by

Py olx (0p@31% D) = X Px(1)lx 0 *31¥2) Px (1) lx 1y 21X 1)-

X2

b) Repeated use of the procedure applied in part a yields

oo

_[ _[fX,, IX,‘_l(xn |xn—1)fX,,_11X,,_z(xn—1 |xn—2)fX,,_2|X,,_3(xn—2|xn—3) X

—o0

X me+1 X, (xm+1 X )dxn—l T dxm+l

= j _[ [ J Fx. 1%, %, 2 1o X2 x, 1, ,Con 1 1n 20 1]

X fx 1%, Gn2Xn3) *** Fx, 1%, Cma1 1Xm )Xy -

oo oo

=J f [_[ Ix.x 1%, .G, Xno X0 2)d%, 11 Fx, ix, KnalXp3) X -

X fX,,,H X, K1 X Yax, 5 dxp, 41-
= _[ _[fX,, |X,,_2(xn lxn—-Z)fX,,_le,,_3(xn—2 lxn—3) X

X meH'Xm(merl X )dxn—2 o dxm+l

= fX,, X, Oy 1% )-

5.16 a) From Figure 5.2, we obtain

Ch. 5: Classes of Random Processes
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P,(1) =Py Py (1) + PPy _(0)

P,(0) = Po Py (1) + PPy _(0)
or
=PP,_;,
where

AP Py Py

P, = {PX,,(O):I and P=

P1y P
Given the initial state probabilities P, the above can be reexpressed as
P,=PP, ;=P?P, ,=...=P"P,
For Py=[1/2 1/2]7,Py=Pg =r and P;; = Pyy=1 - r, we obtain
P, =PP,=[12 121
P,=PP, =[12 12]F

P, =P, =112 12T.

5.17 a) We consider the conditional density

f= fX,, X, X,3 .. .Xl(xn 1Xp 2, X3 - - - » xl)‘

From the definition of conditional probability density, we have

oo

f= J.fx,llxn_lx,l_z. X B Xy Xy o5 XY)
X fX,,_l X, 2X5s . . .Xl(xn-l Xy 25 Xp 35 « « xl)dxn—-l'
If
an X, 4X,2...X1 = an X, (*)

for all n, then

f= J‘fX,, |X,,_1(xn Ixn—l)fX,,_1|X,,_2(xn—l Ixn—Z)dxn—l’

which is independent of x,_3, x,,_4, . . . , x;. Therefore,
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b)

)

Ix %, %, 5. . %, = Fx, 1%,
By the same method it can be shown that (*) implies
I %0 Xyms o X = X, X

for all m = 0. Furthermore, it follows from this that

o A LN % .
for all m;<my<ms..., since if X,IX,_, ~is independent of
Xy —m—1» Xyom,-2> - - - » X1, then it is certainly independent of a subset of these

random variables. This final result can be reexpressed as
fx, x, ...x, =Fx, i, (**)
m m=1 1 m m—1

for all n, 2n,_;2...2n Thus, we have proved that (**) follows from (*). It
can also be seen from this argument that if (*) is translation invariant, then so too is
If the process of interest has starting time ¢, and known starting value x, # 0, then
without loss of generality we can work with the process obtained by subtracting the
constant x and shifting in time by ¢, so that X (0) = 0. Since the events (X (z;) = x;
and X (1;) = x;) and (X(%;) =x; and X(t;) - X(;) = x; — x;) are identical, then their
probability densities are equal. It follow that

Ixay .. x@)@as -5 X1)

=Ixe) X, . . ., X)X (), X (t)Fn ~Xn—1> - - - » X=X 1, X1).

Now, if X(0)=0, then X(1;)=X(;)—X(0), and if X(¢) has independent
increments, then the above equation reduces to

Ixey .. xep®ns---5%1)
= fX(tn)—X(tn—X)(xn _xn—l) e fX(tz)—X(tl)(xz—xl)fX(tl)(x1).
By the same argument,

fX(t,-)—X(tj)(xi"‘xj)fX(tj)(xj) 3 fx(;,.)x(tj)(x,-, ;)

Fxy-x @)@ —%;) =

Fxap@;) T fxap®)
Consequently,
Fx @)X )@ Xn-1) * " Fxepx )2 X1)
@y . X@)Fns s X)) = FraGn) " Fxan@)
From the definition of conditional probability density, we have

~ Txe . x@
Fxeox, .. xa = m
1) - o 1

Ch. 5: Classes of Random Processes



5.18 a)

The Random Processes Tutor ¢ 67

Using the result from part b in both the numerator and denominator yields

Fxex o)

Fxe) X .. X)) = = X)Xty

Fxa,

Therefore, X (t) is a Markov process.

If the first increments {Y, — Y, _;} are independent for all n and are stationary, then
since

Yn - Ym = (Yn - Yn—l) + (Yn—l - Yn—Z) +oooF (Ym+1 - Ym)

it follows that Y, —Y,, and Y, —Y, are independent for all ny 2m; 2 n, 2 my,

L
and all such increments are stationary. Thus we shall consider first increments only.

The first increments of the binomial counting process
n
Yn = Z Xt'
i=1
are given by
Y, -Y,1=X,.
Since {X,,} are i.i.d., then the increments are independent and stationary. Since
Yn = Yn—l + Xn’

and Y, ,, Y, 3, ...,Y; are independent of X, (since they depend only on
{X,,, m#n}), then (Y,1Y,_1=y«)=X, + y« is independent of ¥, 5, ¥, 3,...,Y;
and, therefore, {Y, } is a Markov process (cf. exercise 5.17a). Moreover, it follows
that the transition density is given by

Fr iy, O y«) =fx O =y«

which is a stationary probability density. Therefore, this Markov process is homo-
geneous (cf. exercise 5.17a).

Since the random walk process W,, is given in terms of the binomial counting process
Y, by

W, =2Y, —n,
then the Markov property of Y,  obviously transfer to W, ; also the increments of W,
are given by
W, -W,1=2Y,-Y,1) -1

and, therefore, the independence and stationarity properties of Y, — Y, _; obviously
carry over to W,, — W, _;. Since



68 e Gardner & Chen

(Wn [Wn_1=W*) = (ZYn —in IYn_1=—;'[W*+n —1])
= (2{X, +%[w* +n—=1]}—n) =2X, +w. —1

and {X,} is stationary, then the probability density fy, w, _, is independent of n.
Thus, this Markov process is homogeneous.

b) For the sampled and held process (4.29), X (#,) and X (¢,_;) are either independent or
identical to each other; thus,

Ix )
Fx )X ()P X —1) = or
8(xn _xn_l).
In either case, being given X(z,_,), X(#,_3), . . . , will not change this probability

density. Therefore, X (¢) is a Markov process.
5.19 a) (i) Use of the Chapman-Kolmogorov equation yields
E {E {X(t3) IX (tz)} |X (t 1)} = j E {X (t3) |X ([2) =x2}fX(,2)|X(tl)(x2|x l)dXZ
= _U X3 % (t)1x (1) * 31X X3 Fx () 1x (0 )X 21X )X

= j X3 x @lx p®3lx)dxs = E{X(#3)IX ()}

(i) From the result of exercise 1.12 we have for a Gaussian process

E{X(ts) - (t)lX(t)}—MXt — iyt
3) —mx(l3 M=K tz)[ (t9) —my (1)].
Therefore,
Ky (13, 1))Kx (15, t1) 3 Ky (13, 15)
Ky(ip 12) —E{m[X(l‘z)"mx(fz)][X(fl)—mx(ﬁ)]}

= E{E{X(t3)—my (t3)IX ()} X (t ) —my (t D]}

= [ ExX (9 =my (09X (1)) =22} x, ~mx (1 D] Fxqyr o2 X )Xo,

—o0

= ”J [x3=myx (1)1 Fx () 1x (1) 31X DAX 3[x | —1mx (F D1 x (1% (1)K 20 X DX 20X

Ch. 5: Classes of Random Processes
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E J-” [x3—my 3)]1[x 1 —my DL x @)1x e x ¢ ) 31225 X1)
X Fxtx)x (1y*2> X 1)dX 3dX 2dX |

= H [x3—my (t3)]x;—my (f1)]fx(;3)x(t,)(x1v x3)dxdx3 = Ky (11, t3).

(iii) From (5.22), we have
Ky(t;, tj))=0 exp{—oc 18— 1)
Therefore,
Ky (13, 1Ky (5, 1) o*exp{~0[t3~15]}exp{~0t,~1,])
Kx (12, 12) o> ’

ty <y < iy
= czexp{—otz[(t3—t2)+(fz'tl)]}

= o%exp{~02[t3— 111} = Kx (13, 11), 11 <ty <13

b) Let g(t) =e™ and h(¢) = e'. Then, from (5.23), we have
Ky (ty, 15)

g[max(zy, tp)]h [min(ty, 15)] = g (t)h (1), 1=ty

exp{—ty+11} = exp{~lt;—t5l}, 13 <ty

Due to the symmetry of Ky, this result hold for ¢#; = ¢, as well.

5.20 a) For a first-order Markov process, we have

NS N N | W A
Therefore,
% A
Xn+p=E{ n+p|X X nq+l}_E{ n+p }
which depends on X,, only. For an m-th order Markov process, we have
erH-p |Xan—1 ----- Xn-—q+1 = an+p IXan—l ~~~~~ Xn—m+1'
Therefore,
% A
X = [ Xy IX,, X,_1s - - - s Xy it}

=E{X, n+p |Xn’ Xn—l’ tero Xn—m+1}’

which dependson X;, i =n,n-1,...,n—-m+1, only.
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b) Let X, be a Gaussian process with means and variances denoted by
my  =E{X,,,} and GXZ,W:Var{XHp}. Also, let X = [X, X, ;...X, 1.

n+p
Then, it can be shown (cf. exercise 1.12d) that the probability density function for
X, +p conditioned on X is Gaussian with mean and variance
- T -1
my  ix =mx, +Kgx  Kyx(X-my)

2 _ 2 F g
ox,.,x = O, — Kxx,,, KxxKgx

n+p?

where
Kxx,,, =E{XX,.,}, mx=E{X}, Kxx=E {(X-myg)X-my) }.
Hence,

Xprp BEX, X, X, 1o Xy g} =y

n+

T =1
5 < KXX,,H,KXX (X—mx),

which is a constant plus a linear combination of the g available data points, in which
the g—vector of coefficients is given by
- kI —i
¢ = Kgx , Kxx

and the constant is given by

¢ =my

T =1
.~ Kxx,,, Kxx my.
521 LetdX =X(t*)— X (¢) and dr = ¢+ — ¢. Then, from (5.66c), we obtain
m(x, )dt = E{dX(t)IX(t)=x) = E{X(tH =X @)X (t)=x)
Thus,

- l
My o+ — m -
mx, 1) = X WX@)=x “Mx@X@)=x _ 9 i

dt T % xOR@O=r
Similarly, from (5.66d) we obtain
o%(x, t)dt = E{[dX(t)—m(x, t)dt 121X (t)=x}
= E{[X (") ~my mix (y=x — X @) =My yix oy =) PIX () =x)
= E{[X (t") ~my (m1x ()= 11X () =x)
= 2[x —my yix ) =x JE LX) = My oyix y=x (X () =x}
+ E{[X(®)—~my g )= X () =x}
= O ylk@=x ~ TEOIX O =x-
Thus,
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2 2
Oxix)=x ~ X wlx@)=x _ 9 I
s=t*

2 2
cX(x,t) = =—o _
(x, 1) 7 35 CX@)Ix@)=x

5.22 (i) Substituting m(x,?)=0 and o*(x,t)=0> into (5.66a) yields the simplified
Fokker-Planck equation

d o? 9%
—f(x,t)— ——f(x,t)=0.
atf(x ) ) axzf(x )
If
(x —x0)?
o 1) = e — 2, *)
\2na(r - t,) ot —tg)
then
d no? 1 & —x0)?
—f @, 1) =——————exp{-————
ot 2rod(t —15)]>? P17 a2(t —tg)
1 (x —x0)2 (x —x0)2
P —— > D) eXpiL— 5
\2maX(r — 1) 205 —to) (1 —1)
2 (x —xg)®
2 fen=- T
ox 02(t —tN2ma(t — 1) ot —tg)
(x —x¢)° L. —xo)’ |
[t -t 2ma(r — 1) 2 ot —19)
Thus, equation (¥*) satisfies the Fokker-Planck equation.
(i) For a Markov process, we have, from (5.5),
Fxepx - x@)& 0 X2 -+ s X)
= FX )X 10O Pn-DF x 1, )X () Fn-1Pn—2) * * Fx e D)- *
Substituting
1 o —x;_1)
fX(tj)IX(t,_l)(xj |xj_1) = € — }

exp 5
\/2na2(tj —tj—l) 2a‘ (tj _tj—l)
into (*) yields (using xy = t5 = 0)
Fxaoxa) - x@)&1 X2+ - -5 %)
1 1 2 (& —xj—l)z }

= exp{ — 3

n 2 —
2n/2 200 o it
(21'CQ. )n/ H(t] _tj_l)llz Jj=1 b=
Jj=1

]
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which is of the form of a joint Gaussian probability density (cf. (2.37)) with
n
Jj=1
and

1 1 1
K§1=diag{ 3 y e, —— .
0%ty ~tyoy)y Oty =1, ot —1g)

5.23 (i) From (5.27), we obtain
0=E{X(t,)- X, DIX(), X2, ..., X1}
= E{X @)X (1), X, -« - X (1)}
—E{X(t,_ DX ), X(t), - .., X(W,_1}
=E{X@)IX (), Xy, ..., X[} — X1
Therefore,
E{X@)XE). X1, ..., X1, D} =X{E,-1-

(i) Since an independent-increment process with known initial value is a Markov
process, then

fx E)XEX W) o X () fX(tn)IX (tn-1)
and (5.28), therefore, reduces to (5.30).

5.24 a) Using the properties of conditional expectation in Chapter 2, we obtain
E{Y, IY,Y, ..., Y, 1}

= B (B W s v 0 0 s § I s Xy = v s K I

=Ex {(E{E{ZIX)IXy, ..., X, e Xy, - .. , X,-D}HX, 1 (using (2.45))
=Ex {E{ZIX,)lgXy, ..., X, D)) (using (2.47))
=E{ZlgX;,...,X,_1)} (using (2.45))
=E{E{ZIX{, ..., X, g(Xy, ..., X,.)} (using (2.47))
=E{Y, 1Y, Yo ... .Yy} =Yy

where Ey {-} is the expected value with respect to X, only. Hence, Y, is a
martingale process.

b) We have Y(t) =X (t) — my(¢), in which the initial value X(¢y) is known (thus
my(t) = E{X()IX(tp)}). Let Z; denote the independent increments of X (). Then
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Z, = X(t,) ~ X () = Y(t,) = Yty 1) + my(t,) — my (t,_y)
Zyy =X(tyo) = Xty =Y (W) — Y (0,0 + my (t,1) — mx (8, _9)

Z1=X@) Xty =Y (@) Y@y +my(ty) —mg(ty)

and

E{Z,-my@t,)+mx(t,_ D2, Zy, . . ., Z,1} = E{Z, —mx (t,) +mx (t,_1)}

=E{Y(t,)-Y(t,-)} =0-0=0

since Y (¢) has zero mean. Thus,

E{Y(@,) =Y, DIY (@), Y (@), .- .. YD)} =0 (¥ (ty) is known)
and, therefore,

E{Ya)IY (o), Y1), ..., Y1)}
=E{Y(@,_DIY (@), Y, .... Y0, D} =Y(,_),

which is the defining property of a martingale process.

5.25 a) Since Z(t) = aX(¢) + bY (¢), then
my(t)y=E{Z(t)} =aE (X ()} + BE{Y ()} = amx(t) + bmy (¢).

Thus, mz(t+u)=my() for all @ and b if and only if my(t+u)=my(t) and
my (t +u) = my(t). Also,

Ry (t1, ty) = E{Z(t)Z(ty)}

= E{(a®™ ()X (ty) + abX (t )Y (t,) + abX (t)Y (t;) + b2Y (¢ )Y (£,)}

= a’Ry(t1, t5) + abRyy (t1, t5) + abRyy (t1, t5) + b2Ry (t1, t2),
and, therefore, R, (#{+u, ty+u) =Rz (t, t5) for all @ and b if and only if

Ry(ti+u, ty+u)=Rx(ty, ty), Ry(ti+u, ty+u) =Ry(ty, ty),
and
Ryy(ti+u, ty+u) =Ryy(ty, o).
b) Let X(¢) =X, (t) + X;(¢t), where X, (¢) and X, (¢) are the real and imaginary parts of

X (¢). Then

X.(t)= %X(t) + %X*(t) and X;(t) = %X(t) — %X*(t)

and, consequently,
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1 | Q- 1 1«
RX,(tl’ t2) = ZRx(tl, t2) + ZRx(tl, tz) =+ Z‘RXX‘(tl, t2) o Z‘RXX* (tl’ l‘z)
1
?RC{Rx(tl, tz)} + "'RC{RXX (tl, tz)}
1 * 1
Ry, (11, tg) = Ry (21, 1) + ZRX(tla ) 4Rxx (t1, 1) = —Rxx (t1, 22)

= %Re{Rx(tl, tz)} - lRe{RXX.(tl’ tz)}

1 1
Ry x,(t1, 12) = ZRX(II’ ) - RX(tl’ 1)) — _RXX (1, 1) + 4RXX (11, 22)
1
= 'Z‘Im{Rx(l‘p ty)} - —Im{RXX'(l‘p t)}.

Hence, X, (t) and X;(¢) are jointly WSS if and only if Ry (¢;, t;) = Rx(¢;—1;) and
Ryx+(t1, t9) = Ryx+(t1—17).

None of the three processes A (f)cos(wt), A (t)sin(wz), A (¢ )e!® satisfy the above
necessary and sufficient conditions.

5.26 Since {X,, } are independent, then
fxlx2 . & =fx1fx2 o 'fx,,-

For stationarity, we require

fX1+mX2+m--- n+m foXZ f

for all m and »n. Thus, for this process, we require f f X, for all p and m, which is
equivalent to requiring that fx does not depend on p; that is, the random variables {X,, }
must be identically distributed. In this case, all order probability densities are completely

specified by the single unique first-order probability density. Because of independence,
we have

n

Ix, 1%, %, . =fx, =fx,1x,+

Thus, this is a Markov-process.

5.27 a) We have
X,=aX, 1 +bX, ,+Z,,
where Z, is independent of X, _;, X,, », ..., X;. Thus,

I, %, X0 X, @0 Xnts Xnzs - -5 XD =7 1%, X0y . .. X, (Kn — WX — DXy 3)

=fz,1x, X, —@%p_1— bx,_5) = fx,ix,x,,(n)-

Ch. 5: Classes of Random Processes
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Hence, X,, is a second-order Markov process.

For n < ng, we have
E{X,}=aE{X, 1} +bE{X, ,} + E{Z,}
or
my = amy + bmy + m;z.
Thus,
my =my(l—a->b).
For n = ngy+ 1, we have
E{X, 1} =aE{X, )} + DE{X, 1} + E{Z, 1} = amx + bmy + my = my,
where the last equality follows from the result for n < ny. Thus,
my(ng+1) = my.
Similarly,
my(no+i)=my for i =2,3,4,....
Furthermore, let n = ny + 1 and k£ < ng; then we have
Xpor1 = aX, + X, 1 + 2, 4
and

Rx(n0+ 1, k) é E {Xn0+le} =aFE {XnoXk} + bE {Xn IX/C} +E {Zn0+1Xk}

o
=aRy(ng—k) + bRy (ng—1-k) + mymy
=aRy(ng+1-k—1) + bRy (ng+1—k —=2) + mymy,

which is a function of only ny + 1 — k. Therefore,

Ry(ng+1, k) =Ry (ng+1-k).

Similarly,

Ry(ng+2, k) =Ry(ng+2-k) for k<ng+1

and, likewise,

Ry(ng+i, k)=Ry(ng+i—k) for k<ny+i-1, for i=3,4,5....

Therefore, since E{X,}=my for n >ny and E{X,X, } depends only on the
difference n —m for n, m > ng, then {X, } is a WSS process for n > n,

5.28 We have X, ,; = aX, +Z, for —oo < n < oo, This is the response of a first-order system
(linear constant coefficient difference equation) to a stationary excitation. As long as this
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system is stable, its response should be stationary also. However, if the system is
unstable, the response will grow without bound, in which case it would not be stationary.
The system is stable if and only if la| < 1.

529 a) LetY =v,X(ty) + voX(t5) + - - - + v, X (t,) = v/ X, then
vVIRv =V E{XXT}v=E (v XXTv} = E{Y?} > 0.
b) Since R = E {XXT}, then
RT = [E{XXT}F =E{IXXTT} = E{XXT} =R.

¢) The explicit formula for the correlation matrix is given by

X ()]
X(tp)
R=E(XXT)=E( | |[xe) x@ - X6))
X (6|
(E(X@DX()} EXE)X(E)) - E{XE)X@,)) |
E{X()X(t)} EXX ()} -+ E{X@)X ()}
| E(X@)X()) EXE)X()) - E{XE)X (@)
Rx(o) RX(tl—IZ) RX(tl_t3) o : RX(tl_tn)
Rx(tz-‘tl) Rx(o) Rx(tz—‘t:}’) ct - Rx(tz"’tn)
RX(tn—l_tn)
LRX(tn—tl) Ry(t, —ty) Ry(t,—t3) - Ry(ty—t,)  Rx(0)

Therefore, when ¢ — 1, =t, —t3="--=1t, 1 —t,, then R is Toeplitz.

5.30 a) Since X (¢) is WSS, then we have
®
Ry()=E{X+DX®)} =E{XO)X(¢t+1} =E{X(¢+1-DX(+71)}
=E{X@t'-1)X(")} =Ry (-1), t'=t+1

Ch. 5: Classes of Random Processes
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(ii) Using the Cauchy-Schwarz inequality, we have
Ry ()| = |E{X(t + DX ()}] < E (X%t +7)}2E {XX1)} "2 = Ry (0).
(iii) Using the Cauchy-Schwarz inequality, we have
E (XXt +1+8) =X ¢ +D]} | < E{X2OVPE{[X(t+1+8) - X (¢ + DI},
which is equivalent to
Ry (1+8) = Ry ()| < [2Rx (0){Rx (0) — Ry (©)}1',
which reveals that
E1i_1>n0 Ry (t+€) =Ry (1) if Sli_r)n0 Ry (€) = Rx (0).
Hence Ry is continuous at 7 if it is continuous at 0.
b) The MSE is given by
MSE AE{[X(t) - X (t —Tp))*} = E {(X%(t) + X2(t — ) — 2X ()X (t —=Tp)}
= 2[Ry (0)— Ry (Tp)].

Thus, if Ry (Ty) = Ry (0), then MSE = 0 for all .

5.31 Consider Y (t) = X(t —©®), where © is uniformly distributed over (-7/2, T/2] and is
independent of X(r), and assume that my(t+T)=my(t) and Ry(t{+T, t,+7T) =
Ry (t1, t5). Then the mean of Y (¢) is given by

my(t) =E{E{X(t-0)I0}} = E {my(t —0)}

1 T2 t+T/2
=~ [ my@-0)d0= | my(u)du
T—T/Z t-TI2
-T2 T2 ! t+T/2
= LY J‘ my (u)du + & J. my(u)du + — '[ my (u)du
Tt—T/Z T—T/2 r T2
i T2
= — j my (u)du = my,
-T2
since
=T/2 T2 t+T /2
J. my (u)du = J. my (u)du =— J. my (u)du
t=T/2 t+T/2 T2

(because my (u +T) = my (u)). Similarly, the autocorrelation of Y (¢) is given by

Ry(t+71,t)=E{E{X(t+1-0O)X( -0)I0}} =E{Rx(t +1-0, t —0)}
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| T2 1t+T/2
= = [ Re+1-0,1-00d0 = — [ Re(u+7, uw)du
-T2 t-T/2
~T/2 1 T2 1 t+T 12
[ Ry@+t, wdu + = | Ryt wydu + = [ Ry(u+1, u)du
t-T/2 T—T/2 r T2
1 T2
o | Ry, u)du = Ry (@)
-T2

1
T

by the same reasoning used for my . The autocovariance of Y (¢) is given by

T2 T2
Ky(@) =Ry(@) —mf = = | Ry(u+7, w)du — -17 [ g @ymy v )duay.
T—T/2 T=irm
This result does not in general reduce further unless my (¢) is constant, in which case we
obtain
T2 T2
Ky(@) = = | Ry(u+7, w)du — m@ = ] | Ry +7, u)-mPldu
T in T 7,
T2
- | Ky Gu+1, u)du.
T 7p

5.32 From (4.29), we have

X@)= 3 V@I —nT).

Therefore,
my()=EX@®)) = 3 E{V@T)}h(—nT)

n=-—oo

oo oo

= Y myh(t-nT)= Y myh(t—[n—1T) = my(t +T).

n=-—oo n=-—oo0

Similarly, from (4.31), we have

RX(tl’ tz) = Kx(tla tz) + mX(tl)mX(tZ)

= Y 03h(t1—nT)h(t2—nT)+mX(t1)mX(t2)=RX(t1+T,t2+T).

n=-—oco

Thus, X (¢) is cyclostationary in the wide sense with period T'.
From (4.38), we have

my(t) = myE {sin(®gt +P)} =my(t +T),

where T = 21/ ). From (4.39), we have
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Rz (t1,tp) = %Ry(tl—tz)[cos(a)o[tl——tz]) — E {cos(mg[z+1,]4+2D)}]

=Ry (t;+T12, t,+T/12), T=2m/w,

Thus, Z(t) is cyclostationary in the wide sense with period T. (If my;(¢t) =0, then Z(¢)
is cyclostationary with period T'/2.)

5.33 From exercise 4.15, we have

X(@)= Y p@-nT—P,), p(t)=

n=-—oo

1, 0<5t<A
0, otherwise,

where {P,} are i.i.d. Therefore,

oo
)

my)=E{X®}= Y, [p(t—nT —u)f,w)du

Nn=—00 —oo
= Y [p@—In—1T u)f,@)du = my(t +T)
n=-—o00 —oo
and, similarly,

Ry, t)) =E{X(@ )X} = i jp(tl—nT—u)p(tz—nT—u)fp(u)du

n=—co —co

oo oo
oo

+ 3 Y [pt-nT —w)f,)du [ p(ty=nT —rT —v)f, (v)dv

r#0 n=—c0 —oo
=Rx(t1+T, t2+T)

Thus, X (¢) is cyclostationary in wide sense with period T .

5.34 We have
IRy (at, bt)| = |E {X (at)X (bt)}|
S E{XYa)}PE (X2(bt)}2 — 0 as t —> oo.

On the other hand, if Ry (¢, t,) = Ry(¢;—1,), then Ry(at, bt) = Ry([a —b]t) = Rx(0)
for all + when a = b, and therefore, Ry (at, bt) +>0 as t — oo,

5.35 There is only one point in the intersection of G, S, and M.

S: Stationary process
G: Gaussian process
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M: Markov process

W:  Wiener process

OU:  Ornstein-Uhlenbeck process
IL Independent-increment process.

Ch. 5: Classes of Random Processes
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6.2

6.3

Chapter 6

The Wiener and Poisson Processes

From (6.10) (or (4.23)), the variance of the process W (¢) in (6.6) is given by

_ . _ . 2 . _ . 2
Var {W ()} = Al,lglo Ky (@, 1) = AI,ILHO Ajymin{n,n} = Alxli)no Agn.
Since n = [¢t]/A, and A,, = 0A}, then

2 0, x>1/2

Var (W(t)} = lim —[t]= lim o?AZ ' [t]=Y 0%, x=1/2
A—0 A, A—0

oo, x < 1/2.

Thus, x = 1/2 is the only viable value and this yields the Wiener process.

Let 0 <ty < t,. From (6.12) and (6.13), we obtain for the given process X (¢)
my(t)=E{X(@t)} =eE{W(*)}=0
Ky(t1, 1)} = E{X(t)X (1)} = e "7 E (W ()W (*?))

—ti—t

. 2t 2t t—t
=e min{e”', e“*} =" %

Therefore, X (¢) is WSS. Furthermore, since W(¢) is a Gauss-Markov process, then
X(@)=e"'"W(e?) is also a Gauss-Markov process since neither amplitude scaling nor
monotonic time warping destroys the Gaussian property or the Markov property. As a
check, we see that

KX(t3, tZ)KX(IZ’ tl) et2‘t3et1—f2
Ky (15, t5) 1
which is (5.21); therefore, we see that if X (¢) is Gaussian, then it is a Markov process.

In conclusion, since X (¢) is a stationary Gauss-Markov process, then it is the Ornstein-
Uhlenbeck process.

= etl_ts = Kx(tl, f3),

Let ; <, < t3 < ty; then by using (6.13) we obtain for the Wiener process W (¢)
E{[W () —-W (@ )IIW (t5)—W (]}

=E{WQEDW ()} —E{WEDW(t)} — E{W ([t )W (t3)} + E{W ()W (z,)}

2t

= 0% — 02t — a2ty + o’y = 0.

Thus, the increments, which have zero mean values, are uncorrelated.
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6.4 From (6.13), we have

Ry (11, tp) = o2min{ty, 15} = 03[t ju(ty—1) + tou(t;—19)].
Therefore, (6.19) yields

2

Ry (t1, 1) = %IZRW(II’ ) = aazoc [u(t,—1) — 118(ty—11) + 150(t 1 —17)]

aa 02[u(ty—ty) + (to—11)8(t,—1)]
2]

aa 02u(ty—11) = 028(t,~ 1) = a2d(t; — 1),
%)

which is (6.20), as desired.

6.5 Using the result (6.20) yields
Ry(t1, 1) = E{Y(t )Y (9} = E{X (DX (D}E{Z (1 )Z(t2)}
= Ry (t1, 1R (t1, tg) = 0Ry (¢}, 12)8(t 1 —17)

= 02Ry (t1, 11)8(t 1 —1,) = 02[GE(t )+ mF( DIS(1,—1,),

which is the desired resulit.

6.6 @) Substituting w =rA,, and ¢t = nA, into (6.52) yields

/ 2
1 p{_l(wAw) 5

Py = ——
W™ \ZmiiA, tIA,

Then, using the hint and (6.5) yields the following first-order probability density for
the Wiener process W (¢):

Frw) = lim
w)= 1uaum —-
wa) A0 A,

1 ] WiA,)? 1
= lim ————— - = exp{—

——————EX] = ————exp
80 A \[2na/A2 2 o?tIA} \2mos 2 o’

Since A,, = an/A,, then
112
2=, =K = aH
n

and, therefore, riNm = wilont . Consequently, we have the limit

r w w
lim — = lim —
n—eo \/n n—oo ODI[ a‘]t
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for fixed w and ¢. Thus, r is indeed on the order of Vn asn — oo.

by Let Z; =W (@) —-W(t;_), i =1,2,...,n; then {Z;} is an independent identically
distributed sequence with Gaussian probability density. Thus, {Z;} are jointly Gaussian
random variables and, therefore, for arbitrary {g; },

¥ = EnlaiZi =t iai[W(fi)—W(fH)]
=t =1

is a Gaussian random variable. But Y can also be expressed as

=

1

Y =23b5,W(),
0

where by=a, b, =a,, and b; =a; —a;,,i =1,2,...,n—1. If we let t;,=0,
then W(ty) =0, and also, since {g;}{ are arbitrary, {b;}{ are arbitrary. Therefore,
since Y is a Gaussian random variable, then the Wiener process W (¢) is a Gaussian
random process.

6.7 a) Let t{ < t,; then, from (6.12) and (6.13), we have for the Wiener process W (z)
E{W@D}=0,  Var{W()} = o’
E{W(t)} =0, Var{W(y} =%,

Kyt t) ook {tl}uz

Lin Var (W) WVar (W(t)) oty

from which it follows that W (¢) is nonstationary. However, using the result of exercise
1.12d for jointly Gaussian random variables yields

%)

f (Wolw1) 1 (-] (wo—yw N2, /ot )?
wen)we)W2lw)) = ——————expi—7
o \2mot, (1) 2 o251 =72
U WS B iV
\2m02(,~17) 2 oX(ty—1y)

= fwrn)we s W2lw 1),

from which it follows that W (z) is a homogeneous process. It follows from exercise
5.17b that W (¢) is a Markov process.

b) It is shown in part a that fiyiw)W [wo) is given by (6.53) with replacement of ¢
with t —tpand w with w — wy for 7 2 O:
1 (w—wp)

FwolwegW W) = ————expi—5——— -
’ \2mo(t — t,) 2 o2t —tg)



84 ¢ Gardner & Chen

To see that this function satisfies the diffusion equation, we observe that

- w —wo)*
%fW(INW(l‘o)(W wo) = \/m 2t —lto) 4 20t —;)0)2
X exp{_% (M; —WO)Z
< ot —tp)
and
3 1 - (W —w)*
a2 O O g G —1g) | Q1)
X exp{_% (M; o
ot —tg)
Therefore, we have
2 92

0 o
EfW(t)lw(to)(W wo) = waW(t)lW(to)(w wo)-

To show that the diffusion equation follows from the Fokker-Planck equation, we
observe that (5.66e) and (5.66f) yield

0 | d
mw,t)= s TWSIWn)=w | =5w=0
2

s=t* O
2 _9 .2 I _ 9 2y
c‘w, t) = B GW(S“W([)=W|$=[+~ asOL(s t) = o~

Therefore, the Fokker-Planck equation (5.66a) reduces to
1 3% 5 =
'a_th(z)lwoo)(W wo) — E—_—awz [0 fw yw oW W)l =0,
which is the diffusion equation.

6.8 Using the event definition A A(W(): W(s)=w for some s <t} and the fact that
(A, Wt)zw} = {(W(E)=w} (since W(0) =0) in the hint yields

Py()=PA)=PA, WEH)Sw)+PW(t)zw).
Applying the definition of conditional probability density yields
PA)Y=PW@)Swl|APA)+PW()z2w).
Using the reflection principle (6.54) then yields
PA)= %P(A) +PW(E)zw),

from which we obtain
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Py (t) = 2P (W (t)2w) = 2[1—Fyy,(w)l.

Since my )y =0 and Oy ) —> oo as t —> oo, then Fy () —> 1/2 as ¢ —> . As a result,
Py(t) = last — oo,

6.9 For the Poisson counting process N (¢ ), using (6.34) yields

E{N(f)}=n%nPt(n)=n%ne‘7"OZ) mg(’?»ﬁ)l)'z _th&r)
Similarly,
E{N@+T)} =Nz +T).
Hence,

E{N¢+T)-N@)} =E{N(¢+T)} —E{N@)} =Mt +T) — At = AT.

6.10 Let ¢y <ty and N(t;)=n; <N(t;) = n, Then, for the weighted Poisson counting
process W(t), we have

RW(t17 tz) =FE {W(fl)W(tz)} =F {E {W(II)W(IZ)]NO‘I) and N(tz)}}
N@E)  N@2)
i=1 Jj=1
N@)  N(@D N(ty) N (1)

E{(YY, YY;+ XYY, Y Y;ING@)andN(ty}}

i=l  j=1 i=l j=N(t)+
N(@) ) N(ty) N(t1) N(t2)
=E{ Y E{Y }+ YE(YI+E{ X YIE{ Y Y;}IN() and N(ty)}
i=l i,j=1 i=l J=N()+1
i#j

=E{(6g+mAN (t{) + m@N (t DIN (t)—1] + mYZN(tl)[N(tz) -N(@ D1}

= (67 +mAE (N(t))} + mPE (N} (t,)-N(t,)} + mZE (N(t)}E (N(t,)-N ()},

l
been used. Carrying out the expectation in the above equation yields (with the use of

E{N%(t)} =M+ M)D

where the independence of Y; and Y;, for i # j, and of N(¢;) and N(¢,) — N(¢;) has
J 1 2 1

Ry (1, to) = (0Y+mY)7u + mYZ(ktl)2 + mFAt (A=At )

Hence, using (6.38) yields
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Ky (1, 12) = Ry (1, t2) — my (¢ Yy (1) = MOF+mPty, 1) < 5.
Similarly, it can be shown that
Kyt t) = Mog+mP),, 1<t
Thus,
' Ky (1, t5) = Mo +m@) min{ty, t,}.
Finally, to verify that E {N 2(t)} =M + (M2 )2 we proceed as follows:
2 (M) e™ [n(n—1)+n]A)"

2 - 2 = e™
E (N%(1)) = ,,21" P,(n) = Zn — 21 nl
=e M) Y (M) +7»tZ O;t) =@+
m= 0 ! =0

6.11 From the definition of conditional probability density and (6.35) and (6.25), we obtain
Prob {N(tm)=nm |N(tm_1)=nm_1 ¥ %1 % N(t1)=n1}
Prob{N(t)=n{, N(t))=ny, ..., N(t,)=n,}
Prob {N(t1)=n1, N(t2)=n2, TR N(tm_1)=nm_1}

Pt,,,—t,,,_l(nm — Ny —1)

Prob {N(tm)=nm’ N(tm—1)=nm—1}
Prob {N (t,,-1)=11}

= Prob {N (t,,)=n, IN(¢,_1)=n1,_1}.

Therefore, by definition (cf.(5.11)), the Poisson counting process N(¢) is a Markov
process. Furthermore, the preceding shows that the transition probability is time-
translation invariant; therefore, this is a homogeneous Markov process.

6.12 a) For the asynchronous telegraph signal Y (¢), we have

E(Y(1)} = E{=1V®) = 3 (1)"P,(n)

n=0
0o oo oo ALY —\t oo n -\t
- 3 - 3 pm= 3 MLem o 5 MR
::Oe n’;;}id nzjv(:zn n= T)dd

H GRS G- BT “‘?” )
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A At At —At
nure” te e™ —e .
=e7\.t[ _ l=e 2

2 2

b) Since
Y(t +T)Y(t) — (_I)N(t+1:)+N(t) — (_1)2N(t)+N(t+’t)—N(t)

= [(_I)Z]N(t)(_l)N(t+‘!)—N(t) == (_1)N’

where N = N (¢t +1) — N (¢), then the autocorrelation for Y (¢) is given by

Ry@=E{)V}= 3 Pum)— 3 Pr®)
n=0 n=1

n=even n=odd

i (MTI)"e—Mﬂ _ i (Mrl)"e"‘“'

n=0 n! n=1 n!
n=even n=odd
A -A A —Alt
_ e—?»l‘rl[e 1Tl 4 Al e Il _ =Ml ] _ 2kl
2 2 ’

¢) Let U(t) = AY (¢). Then we have
my(t) = E{U)} =E{A}E{Y ()} = (1><% i %)e-ZM =0, 20
Ry(ty, t2) = E{U DU (1)) = E{ANE (Y (1)Y (1))
- [12x% + (=1)2x %]e‘z“’f”‘ =g HMamtl -y 2 0.

Therefore, U (¢) is WSS for r = 0.

6.13 Let the time interval be T. Then

ar AT

P[kIN] = Prob {N(t+T)-N(@#)=kIA} =Py (kL) =e T

where A is the light intensity. Hence,

MTHF
PIMIEIP (k) = Pk IAIP (M) = e T (—}(u)—f’ )
a1 AT
PDIEIP (k) = Pk AP (h) = ¢ 7 kj{,) P\,

and we decide A if

PIMIk]  PIMIEIP(R) eaz—w[%l]k P(Ay)

POkl POLkIP() N

)
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which is equivalent to
—A)T —In[P (Ay) /P (7\9)]
In(A;/Ay)

6.14 For the approximating process X (t), we have
my =E{X()} = ¥ E{X,}h(t-nA)= ¥ Mk -nA,).
n=-—oo n=-—oo

Therefore,

AT h(-nAA, _xfh(t—u)du —kjh(u)du

n=-—oo —oco

my = lim my = lim
A—0 A0

Also, since

R;M =E{X(t+DX(1)} = i E{X,X, }h(t +T—nA)h(t —mA,)

n,m=—o

ZE h(t+’c nADR(E —nA,)

+ Y E{X,)E{X,}h(t+1-nA)h( —mA,)

n,m=—oco
n*m

3 ARG +AT-nARC —nA) + 3 NAZR(+T—nAA(E —mA,)

n=-—oo n,m=—co

- 3 MA@ +T-nA)R( —nA,),

n=-—oo

then
Ry = lim Ry
=& [ h@+T—u)h @ —u)du + 23 [ R +T—w)du [ R =v)dv - 0
=& [h@wh@)du + [ [ h@)du]’
Therefore,

Ky (@) = Ry (@) — m = A [ h(x+u)h (u)du.

—oo
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6.15 a) Assume that {Y;} are independent and identically distributed. Similar to the
approach in the preceding exercise, we can approximate the process by

2@6)= 3 Y, X,h(t—-nA),

n=-—oo

where X,, is defined as before. Then,

my =E{(X(1)) = i E{Y,}E{X,}h(t-A,) =my E; AA R (E—nA,)

n=-—oo n=-—oo
and, therefore,
my = lim my = Amy | h(u)du.
X A—0 & Y_'[o
Since

—o0

Rym =E{X(+DX ()} = S E{Y,Y, }E{X, X, }h(t +T1-nA)h( —mA,)

= Y E(Y2E (XA +T=-nA)h(t -nA,)

n=-—o0

+ Y E(,)E (Y )E(X,)E (X, it +T—nAR( —mA,)

n,m=-—oo

=02 +mP) Y M +T-nA)h( —nA,)

n=-—oo

+mg Y MA@ +T-nADR(E -mA,)

n,m=—oco

—my Y ANA(t+T—nA)h(t —nA,),

n=-—oo

then

Ry(®) = lim Ry(1) = Mog+mP) [ h(v+udh)du + [y [ B )au]”.

—oo

Thus,
Ky (D) = Ry (¥) = mg = Mo +mg) [ h(x+u)h(u)du.

b) Again, if {Y;} are i.i.d., then we can approximate

N(t)
X@)= Y h@t-T;,Y;), t20
i=1
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by

Ry= 3 X,h@t—-nA,, Y,)

n=-—eo

with X, defined as before. Then,

mg =E{X(1)} = f; E{X,}E{h(t —nA,, Y,)} = i M E{h(t—nA,, Y,))

n=-—oo n=—oco

and

my = lim my; =A|| h(u, dydu.
X 11 0 X !_[ (u )’)fYO’) yau
Similarly, we obtain

Ry =E(X(t+0R(1)} = S E(X,X, )E{h(t+T-nA, Y,)h(t -mA,, ¥,))

S E(XE{h(t +1-nA,, Y,)h(t—nh,, Y,))

n=-—oco

1l

+ Y E{X,)E(X,)E(h(t+1-nA, Y,)IE(h(-mA,, ¥,))

n,m=—oc

_ Y E X, )E G +t-nd,, Y)IE(RE —nA,, Y,)}

n=-—oo

1l

3 A, [h@+T—nA, y)h(E—nA,, y)fy()dy

n=-—co —oo

+ Y N2 +1-nA)y )y [ R —mA,, 2)fy(2)dz

n,m=-—oo —oco Zspxy;

Y W22 [ h(t+t-nA,, y)h(t—nd,, y)fyO)dy

n=-—oco —oo

and, therefore,

Ry(®) = lim Ry (0

= Af[nGu, v, y)fy0)dvde + N[ s y)Fy 0 )dvdu]’,

or

Kx@) = Ry (@) — m2 = Af[ h(x+u, y)h@u, y)fy 0)dy.
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6.16 Since Y; =1, then my =1 and G% = 0. Therefore, from (6.38) and (6.39) (with Z;

1

replaced by Y;), we have
mw([)=)\,t and Kw(tl, t2)=>\,min{t1, tz}.
Since Z(t) = dW (t)/dt, then

my(t) = %mw(f) =X

2
KZ(tl’ tz) = E?&;KW(II’ fz) = Kﬁ(tl—tz).

Therefore, for the Poisson-impulse-sampled process, U (t) = Z(t)X (¢), in which X (¢) is
independent of Z(t), we obtain

my (t) = mz(t)my (t) = hmy
Ry (T) = Ry (DR (1) = [K7 (T) +mZ 1Ry (T) = [M3(T) + A2IRy ().
Consequently,
Ky (7) = Ry () — m@ = M(D)Rx (1) + ARy (1) —my]
= Mo +md)d(t) + MKy (7).

This result differs from (6.44) because in (6.42) the {Z;} are independent of the {T;},
whereas in (6.59) the {X(T;)} are strongly dependent on {T; }.

6.17 a) Since [0, t +A,) =[0, ) U [t, t +A,), then from (6.32) we obtain
Prob{N(t +A,)-N(t)=0, N(t)—N (0)=0}
=P (0)P,(0) =Prob{N(t+4,)-N(0)=0}
= Prob {N (t +4,)=0} =P, 4 (0).
Substituting (6.33) into this equation yields
P,y 4,(0) = P,(0)P, (0) = (1-2A)P,(0), as A, — 0,
or, equivalently,
P, 0) — P (0)
At

= AP, (0).

Therefore,

P,. 1 (0) — P,(0)
t+A, t _ %P; ©0) = —KP,(O).

lim
A—0 A,

The solution to this differential equation is

P,(0) = ce™.
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But P,(0) = 1; thus ¢ = 1 and the probability of zero counts in [0, ¢) is therefore
P,(0)=e™™.
b) Using (6.33) in

Pa)= 3 P,(n —k)P 5 (k)
k=0

yields

Piip(n) =P (n)Py0)+ P (n—1)P, (1) + iP,(n —k)P 5 (k)
k=2

= (1-AA)P,(n) + AAP,(n —1) + 0

as A, — 0 (since Py (k) = 0 for £ > 1 from (6.33)). Thus,

Piip(m)—Pi(n)
A,

=AP,(n—1) — AP, (n).

Hence,

. Prp () =P (n) d
Allli)n0 A = E—P, (n) = AP, (n—1) — AP,(n),

which is (6.61). To solve (6.61), we can integrate dP,(n) or we can multiply both
sides of (6.61) by e to obtain

eM %P,(n) +AeMP,(n) = he™ P, (n - 1),
which leads to
%e’upt(n) =AeMP,(n - 1).

For n = 1, substituting (6.60) into this equation yields

d
Ee”P,a) =5

or, equivalently,
P,(1) = (At +c)e™.
But P (1) = 0. Thus, the probability of one count in [0, ) is
P,(1) = hte™.
Similarly, for n = 2, we have

4

dte*fp,(z) =AeMP, (1) = A%t
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or, equivalently,

242 2
P, = (——7‘; +c)e™ = —(7‘2 e,

Therefore, by induction, we obtain

d Al
ZeMp =
S D=5
or, equivalently,
ngen n
Pn)= (—)\' s c)e™ = Qay g
n! n!

for the probability of n counts in [0, ¢).

6.18 a) Since, from (6.31), we have
Prob{N(t)=n}=P,(n)
and, therefore,
k-1 k=1
Prob{N(t)<k} =Y Prob{N(t)=i} =3, P,(@i),
i=0 i=0
then
k-1
Fr,(t)=1-Prob{N(t)<k}=1- % P,(i), t20.
i=0
To obtain the probability density function for the event point T,, we differentiate
Fr, (t) with respect to ¢:
dFr,(t)
dt

_dr_ u _k_l e M)
=ate e n

fr,@)=

k-1 i i—1
PRy e MY o (M)
=k El (e i e i-1)! ]

_ —M(M)k_l
=r oo 120

since all terms for i > 1 cancel each other. (The probability densities in this family
are called the Gamma densities.)

b) From part a, we have

) oo

E{T,) = [ifr,0)de = [ ihe™

—o0 0

O\.t)k_l
(k-1

dt.

Using integration by parts, we obtain
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oo

xk—ltk r oo N (7\.[)]{_1
E(Ti) =g Ml k| e Bt

kT k
dt =—0+0+ I{ka(z)dt =

Similarly,

oo

p k-1
E(TA) = [ gyt = [ 2he™ %‘f_lﬁdt
0 0 :

~ ATk Jeo “ iy ()1
-~ |0+(k+1)_([ R T
_ k+1 k _ k(k+1)

=—0+0+ A Y

Hence,

2
. _ _k(k+1) k|”_ k
Var{T,} = E{T?} - E{T}})* = " M =7

6.19 For the interarrival time S;, since

P{S,>s}=P{T,—T,_;>s} =P {no counts in the interval (0, s)} = P;(0),
then
Fg(s)=1-P{S;>s}=1-Ps(0).
The density function is therefore given by
dF,(s) d

=L s — s
ds a5 g 4

fsk(S) =

s 2 0.

6.20 Since {S R j=1,2,...} is a sequence of independent identically distributed random
variables, using the result (1.46) repeatedly yields

fr®)=fs®OO fs()® - ® fs(t), 20.

Applying the convolution theorem for the Fourier transform to this equation yields

_ T iot g, _ T (M gk
Or@ = [ froetdr =TT 2@ = 5751

The inverse Fourier transform of this characteristic function is given by

— Apo—M (M)k—l

which is the same as (6.63). This inverse Fourier transform can be obtained by using the

Ch. 6: The Wiener and Poisson Processes



The Random Processes Tutor e 95

facts that
P L T N o
A+io k=D dot ! Atio
and
(==} ” .
%L ddm" F*(@e i do = ()" f ()
and

1 T 1 —iwt —At
— dow= , t20.
ZR_Lk—iwe ¢

6.21 The mean and variance of the interarrival time
Sk =T = Ty

are given by (using (6.65))

oo oo

E(S,) = [sfs6)ds = [ she™ds =

—o0 0

and

Var (S.3 = E{S2} — (E{Si 12 = [ s2heMgs - L =2 1L _ 1
ar {S;} {S¢Y - ES: D _([ s Ty

The mean and variance of the time of the kth count are given by (6.64):

k k
E{Tk} = x and Var{Tk} = F
Therefore, when A = A, we have
1 1
E{S,}=—, Var{S,} = —
LY Y
k k
E{Tk}=z, Var{Tk}—-E,
and when A = 2, we have
1 1
E{S.}=—, Var{S,} = —
T Y
k k
E{T,}) = —, Var (T, } = —.
T T

Hence, the means are both reduced to half their previous values and the variances are
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reduced to one fourth of their previous values when the rate parameter A is doubled.

6.22 Since A(t) satisfies

N - P{t<T<t+A;}
A, =P{T<t+AIT2t} = P
B Fr(t+A,) — Fr(1)
B 1-Fp(t)
then
Fr@t+A) —Fp(t) dFp(t)lde
A) = lim = .
A—0 AL = Fr(2)] 1-Fr(t)
The solution for F.-(¢) can be obtained from (6.66) by integrating
dF,(t
___T_(_)_ =Mt )dt,
1-Fr@)

which yields
t
In[1 - Fr(1)] = = M@d7 + c,
0
where ¢ is an arbitrary constant. For F(0) = 0, we have ¢ =0 and the above becomes

t
1 - Fr(t) = exp{~[ Mwyd},
0

which results in

Fr(t) = 1 - exp{-[ Mw)d1}.
0

When A(¢) is a constant, we obtain
Fr@)=1—e™, 120
and

dFr(t)
fr@)= 7

which is the same as ka(t) with £ = 1 in (6.63).

=he™, 20,

6.23 a) From (6.66), we have
dFp(t)/dt

m=l(t)=kl‘, t 20.
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The solution to this equation with F;(0) = 0 can be obtained by integrating dF(t)
and is given by

Fr@)=1-e*7  t>0.

Therefore,
fr0= T e, >0
b) Again from (6.66) with A(t) = th, we have
% =yb, t>0,

which has the solution
Fr(t)=1—exp{-yP*1/B+1)}, =0
The corresponding density function is, therefore,

dF (¢

7 ) = yBexp{~y B/ (B+1)}, >0

fr@)=

6.24 a) For this single-server queue, we have
E{Nt+S;)-N@®)} =E{E{N(@+S;)-N@)IS;}}
=E{AS;} =AE{S;} = Ams.
b) We also have
my =E{N;}=E{N®D;)-N@A))} =E{E{ND;)-N(@A)l4;, D;}}
=E{MD; -A)} =E{M;} = hmg
by using (6.71). But, from (6.72), we have my = my + mg. Therefore,
my = Mmy +mg).
c¢) It follows from (6.74) and (6.75) that
(omg ? + 122 EKZG 2, small Amyg

_ e |
2 27\1713 E 7\.m5 ’ large MS .

mN=7\.mS+
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7.2

Chapter 7

Stochastic Calculus

For the sampled-and-held process, we have (from exercise 4.10) the autocorrelation

Ry(t1, 1) =Ky (t1, t) = Y, ogh(t;—nT)h(t,—nT),

n=-—oo

where

1, 0<:t<T
h(t)= 0, otherwise.

We can see that condition (7.9) is not satisfied because, for example,

lim [Ry(t—¢g;,t—8)—Ry(t,1)1=0-0%#0

€,6—0
at t =iT for i an integer and €, = — ¢, =¢€; therefore, X(¢) is not mean-square
continuous. Similarly, we can see that condition (7.17) is not satisfied because, for
example,
G Ry (¢ t)| = lim L{1’(’ (t—¢€,t—8) — Ry(t,t —€)
Aoy, XU Ple=nme T g0 e, X0 DT YT TXT TR

—Ry(t—g,t) + Ry (t, 1)}

=612-{63—0—0+63}=°°

at ¢t =iT and €, = &, = ¢; therefore, X () is not mean-square differentiable in the narrow
sense. However, in the broad sense the derivative can be expressed as (using
h@)=u@)—u@-T))

2

0
ot0t,

where (') is the Dirac delta.

Ry(tpt) = 3 GR[8(t,—nT) — 8(t,~T —nT)I[8(t,—nT) - 8(t,—T —nT)],

n=-—oo

For the phase-randomized sampled-and-held process, we have (from Section 4.2.7) the

autocorrelation
o7
Ry(ty, 1) =Kx(ty, 1y = Trh(tl = 13).

We can see that X (¢) is mean-square continuous because condition (7.9) is satisfied:
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02
lim [Ry(t—€;, t—€) — Ry(t, )] = lim ——[r,(e,—€1) — r,(©)] =0
£,6,-0 T

€,6,—0

because r,(t) is continuous at T = 0. Since X (r) is a WSS process, condition (7.19) is
used to examine the mean-square differentiability. From (7.19) we obtain

A2 R @) = lim LRy (€)~2Ry (0)+Ry (8] = lim 28y L ©-r, 0
dt? e—>0 g? e»0 T g2
. 62
= lim —— ;E[T e-Tl=—=

That is, this derivative does not exist. But if the Dirac delta function is used, we obtain

d? _d d 207
dzx() d'c[d 7

2
r,(M] = GTV[ﬁ(T+T)—28(T)+8(T—T)].

Thus, the derivative exists in the broad sense.

7.3 a) Using the definition of Z (¢) in Chapter 6 yields

dW(t)}_

E{W@t)——=}=E{ _[h(t—T)Z(’t)d’t @)} = _[h(t -TE{Z(MZ(t)}dT

o t
= [h@-1o2d-t)dt =02 [ 8a-1)dt, 120
—c0 0

b) The left side of the equation in this exercise can be reexpressed as

|
RA E{X(t)dX(t)}—E{ X(t)X(s)}I =[%Rx(t—s)] .
s=t s=t

Letz — s = 1; then df = d7 and the preceding becomes
-4 |
R = e RX(’C)|1=0.
But since Ry (T) = Ry (-7), then
d d d

i E W = Rt = e R (T )|G

and, therefore,
d

|
———Ry(@|__ =R,

d [
R =—'—R =
dt X0 dt

which implies that R = 0.
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7.4 Since X (¢) is a WSS integrable process, then we have
E{X(2)} = my
E{(X(t))—my)X (t)—myx)} =Ky (t1—1p)

and the integrated process
t
Y(6)= [ X@)du, >0
0
has mean and variance given by
t t
my(t) = E{Y®)} = [ E(X)}du = [ mydu =myt, >0
0 0
and

tt
of(t) = E{IY ) =my ) = [ [ E{X () ~my 1K (t15)~my 1} dt dt,
00

t
0
By making the change of variables T = #; — ¢, and using the window function

1, 0Lu<t
h(u) =

0, otherwise ,

KX(tl_tZ)dtldtz’ t > 0.

Oy, ~

o%(t) can be further expressed as

od(t) = [[ hphKy (11 —tp)dtdty = [ Ky @) [ htp+ DR ()drpd

oo t
= [Kxy@r,@dr=1[ (1 - —lf—l-)KX(‘c)d‘c, >0,

=t

since
) = _'[oh(o'+'c)h ©do=t-ltl,  |g<,
0, Il >t
7.5 Since
0<S[E(X(t)-X(t -9} P <E{[X(t)-X(t—e)*}
and since

Ch. 7: Stochastic Calculus
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lim E{[X(@#)-X(-¢€)*} =0
€—>0

for a mean-square continuous process X (¢), then
lim [E{X(t)-X(t —€)}]? = lim [my(t)—my(t —€)]*> =0,
£—0 e—0
which implies that
lim [my(t)—my(t —€)] =0.
£—0

Thus, the mean function my (¢) is continuous at ¢.

From condition (7.16), we have

0= lim E (S X)Xt -9)]-XD())?)
£e—0 €
= lim (SE (X()-X (-9} - 2E {[X ()X (¢ ~9X V(1)) *)
e—>0 g e
+ E{[XP@)1*))

for a mean-square differentiable process X (t). Also, from the Cauchy-Schwarz
inequality, we have

1 1
[SE(IX()-X( XD} < —(E{X()-X( —ePHVHE (XD

Thus, (*) can be valid only if the quantity
lim LE (X ()-X (¢ ~e)P)
€0 g

is finite. This is a sufficient condition for
lim E{[X(¢)-X@-€)]*} =0
-0

(which is condition (7.8)) to be valid. Thus, if X (¢) is mean-square differentiable, then it

must be mean-square continuous.

For the phase-randomized sampled-and-held process Y (¢), we have (from Section 4.2.7)
the covariance
o}
Ky(1) = Tk ),

where

T(A-IzlT), I=I<T
(1) = 0, otherwise.
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7.8

7.9

It follows that

o¢/lT, -T<1t<0
%KY(T)= 62T, O0<t<T
0, otherwise

and, therefore, that the covariance of the differentiated process Y((¢) is given by (using
(7.23))

e oy
Ky(x)(’t) = _chKY (1) = —Z—T‘-S(T).

For the random-amplitude-and-phase sine wave process Y (t), we have (from Section
4.2.5) the autocorrelation

Ry(ty, 1) = %E {A2)cos(wolt; —15]).

It follows from (7.28) that the autocorrelation for the integrated process YD(¢) is given
by

} 1ty i

Ryen(ty, 1) = | | Ry(uy, up)duyduy = 2—E (4% j [sin(eolt; — u4]) + sin(@quy)ldu,
00
1

g

E {A%}[cos(wglt; —1,]) — cos(wgt ) — cos(®gty) + 1].
Consequently, YD is a nonstationary process. Observe that
YD) = i[sin(coot +0) — sin6];
o
thus, we see that the sum of two correlated processes (—c-oé-sin(mot +0) and —sin®), each
0

of which is individually stationary, can be nonstationary.

It follows from definition (7.37) that
T

TT
E{Y|Y;)=E {I 01(1)Z (0)dt J¢2<u Zu)du} = [ [ 01()03@)E (Z(1)Z ()} dud
00

TT
= [ [ 00003 )028(c — 1 )dudt = 02 J 01103 (1 )d.
00 0

Thus, if ¢; and ¢, are orthogonal functions, then ¥, and Y, are orthogonal random
variables.
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7.10 a) Taking the expected value of both sides of the equation given in this exercise and
interchanging the order of operations yields

The solution to this differential equation with the initial condition my (0) = 1 is
m m
me@) =01+ —=)e* - =, t20.
a a

b) Taking the expected value of both sides of the equation given in this exercise and
interchanging the order of operations yields

t
_[ my(u)du = bmy(t), t20.
0

The solution to this integral equation is

mx(t)=0, t 20.

7.11 The relationship between X (¢) and Y () is given by

RY(t)+ = [ Y (w)du +L% =X@).

L
c

O ey~

Assuming that Y(¢) and X(¢#) are mean-square integrable and differentiable, we
differentiate this equation and take the expected value of both sides to obtain the
following differential equation for the mean my (¢):

2

d d 1 d
LFmY(t) =k R-E;my(t) #* Emy(t) = me(t).

7.12 The mean and autocorrelation of the given process V (¢) are obtained as follows:

t
my(t) =E{V(®)) = [ E{W(s)}ds =0
t-T
and
t %) t 5]
Ryt 1) =E{ [Ws)ds [woydty= [ [ E(WeW@))dsdr
t-T t-T t-T t,-T
t ty 13} 5]
=a? [ [ mings, t}dsdr =02 [ [ [su(t—s)+m(s —r)ldsdr
ti=T t,-T t-T t,-T

3_.3y, L2, .2y 1 2.3 . 5
@i —t5)+ E(tl +t5) - ?tltz(tl—t2+2T) + -—2-(t1+t2) - —3—T , 11 2ty
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For t, > t, we simply interchange ¢, and ¢, in this equation.

7.13 a) For the Omnstein-Uhlenbeck process X (t), we have
RX (1) = 62 e OITl

The autocorrelation function for the smoothed process is given by

1+7T t
ReG+t,0=E{5 [ X@du - [ X0)av)
t+T—A t—A
t+1 i t+T t
= L E (X)X v)}dudv = i Rl =9 il
X
A t+1-A t—-A A t+T—-A t—-A

Using the change of variables u =s — (t +T—A) and v = w — (¢ —A) yields

l>

Ry(t+1, 1) sz j Ry (s —w —T)dsdw = Ry ().
00
It follows from (7.34) that

A
| a Z1ly,—olz~
Ry() = _I(l—_z—l)RX(z ~T)dz = -Z—_J'A(l_%)e 2=l

For0 <1 <A,

0 T A
2
(o} Y4 z z
Ry = [ [ 1+ £z + [ (1= £9e®Vdz + [ (1= Z)e 4z ].
AU A 1V A SV

Integration by parts yields
2
Ry() = (f&-) 20(A=T) + e~ _ g~UTHA) _ gp-at ]

For T = A,

3 9 A
(¢} z _ z B
Ry(v) = T[—“.A(l +Z)e°‘(2 Vdz + J.S (1 = X)eot(z Vdz]

— (_g_)z[e—a('t-A) 4 e 0T+ _ g0t .
Ao

b) The mean-square value of Y (¢) will approach the squared mean value of X (¢) (which
is zero) as A is increased. To see this, we use the result of part a for Ry (0) to obtain

2
E{Yz(t)}=2(—A%) (©A+e A -1) - % — 0 as A—> e

Ch. 7: Stochastic Calculus
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7.14 From the given autocorrelation of X (¢), we know that E {X?(t)} = 1078. Therefore, we
can use the approximation sin[X (¢)] = X (¢) to obtain

t
Y() = g [ X(u)du.
0

Thus, the mean-square error is given by
tt

tt
MSE AE (Y1)} = [ [ E(X )X (v)}dudy = g2 [ Ry(u —v)dudv
00 00
to o nl t nl
. _ 1t — 10-8,2 _ AT —Itir100
= g% _jt(l Ry (DdT = 10g% :[(1 e dt

t
= 2x107%g% [ (1- D)%,
0

Using integration by parts yields

¢ |t 2 |t
MSE =2x1078g2%[-100e~"1%] + —l(t)o’ce‘mo"|0 -+ —(1010) e 0]

= 2x105g2% [1 + %’—Q(e-”“)o—l)].

For ¢t = 12 hours = 43,200 seconds, the mean-square error is
MSE =83 m%s?,

and it grows linearly with ¢ for ¢ > 100.

7.15 a) The autocorrelation of X Dy is given by

t+T ¢t

Ryen(®) = E{XD@ +0X D)} = | [E(X @)X @))dvdu

—00 —00

t+T ¢

= J JRX(u —v)dvdu.
Making the changes of variables 6 = u — ¢ and then W = ¢ + ¢ — v yields
T T oo

t T C
Ryn(® = | [ Ry(o+t-vydvdo=-] [ Ry@dpdo = | [ Ry@ande,

—00 —00 -0 O
which is the desired result (7.40).
b) For Ry (1) = 8(t), we have

T

Ryc(®) = [ u(-0)dc = .

—oo
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For Ry (1) = e~ '¥!, we have
Ryo®) = [ [2u(-0) + eu(0) - e%u(~0)ld 6 = o,

—oc0

For Ry (1) = 28(t) — e~1*l, we have

Rye(® = [[e™0u(0) - e®u(-0)ld 6 < o.

7.16 a) Since

SIX(t) — x] = IdX(t)

dt

|—1
I 3 8(t —1;),

i

then the number of zero crossings of X (¢) for u .S t<vis
4 v
Ny, v) = [ 3 8¢ —1;)dt = [ 81X (1) =x]Y (t)a.
u i u
Taking the expected value of Ny (u, v) yields

E{Ng@, )} = [ EQIX0)-x1¥ 0))dr = [ [[] 84 —x)fyqpev, u)dudv] dt

)

U] 86 —xWFy oy 18)Fx oy @ )dudv] d

—oc0

J va(t)lX It )(V |x )fX (t)(x )dV dt

Il
T e

FxeyXE{Y (@)X (¢)=x}dt,

which is the desired result (7.41).
b) If X (¢) is stationary, then fy ,(x) and E {Y (¢)|X (¢)=x} are independent of ¢. There-
fore,
E{Nx(u,v)} = (v -u)fx®)E{Y(O)IX(@)=x}.
¢) Since X and dX/dt are jointly Gaussian, then their uncorrelatedness guarantees their
independence. Therefore,

dXx (1)
dt

E{Nx(u, v)} = (v —u)fx*)E{l 1},

where,

Ch. 7: Stochastic Calculus



The Random Processes Tutor ¢ 107

E{|%|} = [ 121263z = 2] 2 f2)az
Py 0

= 2 )]
=2 = dz =o6|—| ,
'([o—\/2n el 202} ‘ G[n]

for which Z = dX (¢)/dt and
1/2
_ 2 | d? |
o= [RZ(O)] = l_-d?RX(T)lT=O} .

The desired result (7.42) follows.

7.17 For ¥ (t) = X (t) + V(¢) and [ VXt)dt < oo, we have

—oo

T2 T2 o
im + [ X@)-Y@Pd = lim — [ Vi)t = lim = [Vt =0,
T T—-—T/Z T—oo T—T/2 T— o T_oq

Thus, (7.43) is valid and X(¢) and Y (¢) are, therefore, temporally mean-square
equivalent.



Chapter 8

Ergodicity and Duality

8.1 It follows from (8.17) and (8.18) that the mean of the estimate of the mean is equal to
the mean being estimated,

Ed) =E(L T XA} = LS EXGA)) =L my =m
X Nio Nig Nig * o
and the variance of the estimate of the mean is given by

AN N ~Ny72 1 X . ] & .
Var {ry } = E {[rhy —E {ry }1°} =E{WZ [X(@A)—my] YV—Z [X(A)—-mx]}
i=1 j=1
1 & & , : 1 L& .
=—2 2 E{IXGN)-mylIX(GA) -my]} = — 3 3 Kx(li —j14).
N<iqj=1 i 7

Substituting (8.20) into (8.19) yields the following approximation for the mean squared
error:

A _,\Nz _ ~N __l_N N B 3
MSEy 8 E {[my —#§ 12} = Var (i)} szz Ky (i —71A)
i=lj=1

= (%K © %% Ky ([i —j18) —G}%
= + i~ 1A = —.
N2 i1 " =l =l X N
J#i

8.2 Using the window function % (k) defined by

1, 1<k <N
hk) =

0, otherwise
and the change of variables i — j = k in (8.19) results in
. | - g . 1 & s
Var {1y =Nz > hOR(GKx ([ —j14) ] 2 hk+)h(j)Kx (kD)
i, j=— o= oo

=L S KekD) 3 hk+)RG). *)
NZ s P
=—00 J——DO

But, since

o o N —lkl, -N<k<N
2 hk+h() = 0, otherwise ,
J=—c0

then (*) simplies to (using N = T/A)
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Var {rig'%} = Var (g =_~ z (N = 1k DKy (kA)
k——N
of 2N kA
=ﬁ X(0)+~z (1——)KX(kA) ~ 72 (1= =Ky (kMA.

8.3 Since Ky (T) < Ky (0) for T > T, then
(1- %)KX W =Ky(@), T > 1,

Thus, the mean squared error is approximated by

T T
2 T 2 2 2%
MSEMY2 % | (1-2)Ky(dT= = | Ky(D)dT = =0 — = ——,
T£ ¥ T-([ X T X2 Tm

and this verifies (8.25).

8.4 a) We can use the Cauchy-Schwarz inequality as follows:

T T
1-;— (I)Kx(r)dﬂ? = IE{[X(O)—mX]% g [X (1) —my 1d T} 12
T
< E(IXO©-my PIE ([ | X @ -myldiP)
T T i 2 T
[ [ &x(s —vydsd = GTX [ (I—M)Kx('c)dr
00 -T

o2 &
X T
=2— b[ (1= 7Ky (9dT.

Therefore, (8.42c) is necessary for (8.42b).

b) It follows from the first equality in (8.106) that we are integrating a function over the
square region [0, T] X [0, T'], and this function is symmetrical about the diagonal of
this square. Thus, we will get the same result if we integrate over only the upper (or
lower) triangular region above (or below) the diagonal and then multiply the result by
2. This yields the second equality in (8.106). Now, by using the result (8.106) in
(8.107)-(8.108), we see that (8.42c¢) is sufficient for (8.42b).

8.5 For A =21/, (8.36) yields

Ky(kA) = %E (A2).
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Therefore, (8.109) reduces to

lE{A2} lim L§(1—£)=lE{A2}¢O.
2 N—>e Nk—l N 4

The problem here is that (8.18) yields

. L& s o ;
iy = NZ Asin(i 2w + ©) = Asin(®),
i=1
which does not converge to my =0 as N — . In contrast to this, it is shown in
exercise 8.6 that (8.42b) is satisfied and this agrees with the fact that (8.32) has the limit
A
ool

iy (T) = [cos(y] +®) —cos(®)] — 0 as T — oo
8.6 Substituting (8.36) into (8.34) yields
T

[ teos(eg) ~ =cos(@gvldT
: T

E{A%

T
MSE(T) = % | (1= DKy (d =
0

_Ef{A%} .1 . T 1. Ir 1 T
= —T—[Z)g Sln((l)O’C)lo — T(L)O T SlIl((D()T) | 0 = ?‘0‘)‘&— COS((DOT)lo ]
sin(yl’)  sin(wgl)  cos(wyT’) 1
=E{A%] - B 272 )
ol ol wdT T

Therefore,

lim MSE(T)=0

T—>co

and (8.31) is satisfied. However, substituting (8.38) into (8.34) yields
2 E{A?%} T
_ T2 =T
MSE(T) = T E')- (1- T)sz*t + T '('; (1 T)cos((oo'c)d’c.

Since the second term approaches zero as T — oo, we obtain

. 203
lim MSE(T) = lim T

2 T 2
— T-—]=0z,
T—c0 Toe T L 2] 4

T 2 v
1-—=)o%dt = lim
( T)z S

Oy

which violates (8.31).

8.7 Since Kx (1) = %Gﬁcos(mofc), it is shown in the first part of exercise 8.6 that

T— o0

T
: 1 T
lim — £ (1= Ky (DdT=0.
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Thus, X (¢) has mean-ergodicity of the mean. Since X (¢) is a Gaussian process, then
from (8.52) we have

Ky (u) = K(u) + Ky (u + 0Ky (u —7)

4
c
= TA[cosz((oOT) + cos(wglu +t])cos(wolu —11)]
CA 1 1 1 1
- —4—[3 + —57€0s(207) + —-cos(2wgu) + 5005(2(00‘5)]

4
c
= —gA—[l + 2c08(20yT) + cos(2mgu)].

Consequently, we obtain

4

O
lim A Ky (u)du = —A[I + 2cos(2m,T)] # 0.
T—eo Y 8

|
oSt

Thus, (8.48b) is violated and X (¢), therefore, does not have mean-square ergodicity of
the autocorrelation unless 65 = 0.

8.8 The empirical and probabilistic mean and autocorrelation of Y (¢) are found to be

1T/2 1T/Z
iy = lim — | Y(t)dt =Alim — | X(t)dt = Ay,
ry = lim T_TJQ (r)dt = A lim T_le ()dr = Ay

my =E{Y ()} =E{AX(1)} = E{A}E{X (1)} = E{A}my,
T2 12

Ry(®) = lim % [ Ye+or@ar =a%1im + [ X@+0x@)dr = A%y @),
Fogoe & T2 Too T 1

Ry()=E{Y(t+DY ()} =E{AY)E(X( +DX ()} = E {A%)}Ry (1).
Although 7ty = my and Ry = Ry, we see from the above equations that iy # my and

IQY # Ry (unless A is nonrandom). Therefore, Y () does not exhibit ergodicity of the
mean or of the autocorrelation. The autocovariance of Y (¢) is given by

Ky(t) = Ry(t) — m@ = E {A*)Rx (v) — (E {A})’my? = E {A%}Kx (T) + 63m{.
Since X (¢) exhibits mean-square ergodicity of the mean, then from (8.42c) we have
P 1
lim — | Ky(0)dt=E{A%} lim — | Ky (1)dT + 62my = 62myg¢ # 0.
fim o [Kyue=E W lim o LK@+ ofmd = ofm

Thus, Y (¢) does not exhibit mean-square ergodicity of the mean. The fourth-order
moment of Y (¢) is given by

E{Y(t +T+u)Y (¢t +u)Y (t +DY (t)} — RA(T)



112 ¢ Gardner & Chen

=E{AYE{X(t +1+u)X (t +u)X ¢t +DX ()} — (E {A2})RA(%).
= E{AY)E(X (@ +T+u)X( +u)X (t +1X ()} — RAT)] + 6232 RE(T).

Since X (t) exhibits mean-square ergodicity of the autocorrelation, then from (8.48b) we
have (using Y () =Y (¢+0)Y (¢))

T
; 1
lim — | K d
Tl—)oo T '0[ Yt(u) "

T2
=F {A4}T1im f [E{X@+Tt+u)X(@+u)X(@+7)X (1)} — Ry ('c)]du + GAzRXZ(T)
= LT

= O'AzRX(’C) #0.

Thus, Y (¢) does not exhibit mean-square ergodicity of the autocorrelation.

8.9 a) Since X(t) =0 for ¢t < 0, it follows from (8.110) that
T2 T/2

1
Lim = [ X()dt = o Lim — jX(:)dz SEXO).

T—e T 7,

b) Since the Ornstein-Uhlenbeck process is a zero-mean Gaussian process with auto-
covariance given by
Ky (1) = o2,
then (8.58) can be used to determine the mean-square ergodicity of the autocorrelation.
Substituting Ky ('c) into (8.58) yields
2
Ryc(0) = lim ——-ng(u)du = lim —j 6%~y = lim "7—

T—o0

[1 e—Z(XT] =

Therefore, the Ornstein-Uhlenbeck process has mean-square ergodicity of the auto-

correlation.

8.10 For the given process, we can show that

Ry(Wr =Ry (1 + Ryp (O + Rpa Wr + Rp (7,

where
A@)AY A, cos(@,t +©,).
n

Since B (t) has mean square ergodicity of the autocorrelation, then 133 (T)r converges to
Ry (1). Also, we know that B(¢) cannot contain any finite additive periodic components
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(cf. Section 8.4). Consequently, the cross correlation estimate
T/2

Rz ®r = X Ay~ | cos(@, [t +1] + ©,)B (t)dt
n T—T/2

and IéB 4 (T)7 must converge to zero. Thus, we have
lim Ry(t)r = lim R, (1); + Ry (7).
T—oo T— oo
Also, we have
Ry(t) =R, () + Rz (7)

since R,p(T) = Rg,(t) =0. Hence, X(¢) has mean-square ergodicity of the auto-
correlation if and only if

lim R, (T); = R4 (v),
T— oo

which requires that A (#) have mean-square ergodicity of the autocorrelation. But, we can
show that

lim R, (1) = iz A, Zcos(w,, T)
T—oo 2 n
and

R, (1) = %2 E {A,2}cos(, 7).

Therefore, it is required that A,2 = E {A,?}, which means that A, must be nonrandom.

8.11 Using the model Y (¢) = cx(t —1+) + N (¢), we obtain

| T2 1 T2 T2
Ry@r 8 [ Ye+ox@dr = = [ ex(t 41—t ()t + = | NG +Dx (@)
T—T/2 T——T/Z T—T/2
The mean of R,y (t); is given by
T2 1 T2
E{éxY(T)T} = L J. cx(+T—Te x(@)dt + — .[ E{N@+71)}x(@t)dt
T—T/Z T—T/Z
T/2
= 2 [ ex@ -t )dr = R, x-10)p,
T—T/Z

which tends to peak at T = 7., especially for large T. The variance of Iéxy ()7 is given
by
Var {Ry (Wr} = E{[Ry (W7 —E {R,y (V7 }1%)
T2

= Lz ” E{N(t +TN (u +7)}x (¢t )x (u )dtdu
T 7p
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T2
= L2 ” Ry (t —u)x (¢ )x (u)dtdu
TS 7p
1 e N T/2 .
0
= — Noa(t—u)x(t)x(u)dtdu = — -xz(t)dt g =
T2 —!"‘[2 T2 —TJ'./2 T

which decreases with increasing T. Thus, for large enough integration time T, R,y ®r
will reach its peak at T very close to Tx.

8.12 a) The output of the appropriate device is given by
Ry@) = [h(t—1)X )X (u =T )du.

b) If the lowpass filter has impulse-response function

T, t-T <u<t
h(t—u)= 0, otherwise ,

then R} (T+) in part a becomes
1 t
Ry()p = — [ X)X (4~ )du.
Ty
c) The mean of Ry (1. )y is given by
1 1|
Mean = E {Ry (t.);} = = | E(x @)X @-t)}du = = [ Ky @oydu = Ky (z),
T =T
The variance of Ry (T« )r is given by

Var = E {[Ry (1 )r1?} — (Mean )2

Using Isserlis’ formula to evaluate the first term yields

t
E{Ry(te)r 1) = ?12—_” E (X ()X (=T )X ()X (v =T ) }duedy
t-T

t
= %” [K(ve) + K (u =) + Ky (4 =v +72)Ky (u v =) dudv
t-T

T
9 % IJ ey + K2 =v) + Ky (4 =v +T YK (1 = — T2 )]dudv
0

% (1=K O+ K (w T2 )aw

Oty N

T
= K@) + % [ a=ZoK200)dw +
0
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= K& (T+) + %[1 - 2(1—

204 [ 2T« /1:0( e 2*

Thus,

4

o'ty Ty
W & ol — el
ar = —=[1 - 5

Tx
+ 25 —2Tl/To[ *
e ™[ T

When T > 1(, we have

Var

which is much smaller than

when T > T«.
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—2T/1:0
Sy d—e )]
2 ToT+ To 1 To 2) 1 9 2T /To]
T 2T 2 T( 2 ) T( 2 )

—g —2T/1:0)]

@ TEe Ty 1 T

ot T -
21 _ 2 2T/1:0
T2(2)] 2(T)

+—.
212 212 2T

= _Zi __)04 2T« /1:0
T

2 *
(Mean * = ¢ ™" ”"

d) According to the figure, we have

¢

Y(6)= | X@w)+X@-)Pdu.

t-T

The mean of Y (¢) is given by

E{Y()} = [ E{IX@)+Xu-t)P)du = [ [Ry(0)+Ry(0)+2Ry (T.)ldu

t-T =T
= 2[Ry (0)+ Ry (T+)].
8.13 The time-average mean of X (¢) is given by
T/2
g (T) = — j X(t)dt
T 1

and E {riy (T )} = my. The variance of iy (T') is given by

T/2

Var = E {(m(T)} - m = T— [[ Ex @)% @))dtdu - m

= % j(l - M)RX (1)dT -

-T2

2 T
F (1 o ?)KX (’C)d’t.

Ot N
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Since Ky (1) < Ky (0) for IT| > T¢, then if T > 7, it follows that

Ky (0)
Tty

T
2 -
Var = _(’).KX (MdT =

From the specification Var < l(l)—OKX (0), we obtain an approximate required averaging

time of T = 1007,. Since the effective number of uncorrelated time samples in an inter-
val of length of T is N =T/1y (cf. (8.28)) and since the variance of the estimate that
uses N uncorrelated samples is Ky (0)/N (cf. (8.21)), then N = 100 is approximately the
minimum number of samples that will result in a variance as small as Ky (0)/100.

8.14 Since X (¢) and X (¢ + T) become statistically independent as T — oo, then
Ry()=E{X@t+DX()} — E{XC+DIE{X@®)}= mé.

Therefore, Kyx(t) — 0 and, as a result, (8.42c) is satisfied. Consequently, (8.42b) is
satisfied. Thus, X (¢) exhibits mean-square ergodicity of the mean. From (8.49) and the
statistical independence of X (f;+u)X (t,+u) and X ()X (¢,) as u —> o, we see that

lim Ky )= lim E{X(+T+u)X (@ +10)X (@ +DX (@)} = RET)

U—y oo

= lim E{X(¢+T+u)X (¢ +u)}E{X(+DX ()} - RAT)

Uu—>00

= Ry (DRx (1) — RH(1) = 0.

Therefore, (8.48b) is satisfied and X () exhibits mean-square ergodicity of the auto-
correlation.

8.15 Let {1} = {7y, Tp, T3} and
Ziy®)=X@OXE+1)XE +T)X ([ +713)

and also
T2

5 1
MZ 10 2E {Zm@®),  mz (T) a T J AT
-T12

Then it follows from (8.42) that
0

lim E {[my —1iz (1))
T—o0

if and only if

T
1
lim _([sz(u du = 0,

T—eo
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where

For a stationary zero-mean Gaussian process X (t), we can use Isserlis’ formula (5.58) to
obtain

E{Z(t +u)Z ()= EAX @ +T+u)X (¢ +T+u)X (¢ +T3+u)
XX@+u)X (@ +T)X( +T)X (¢ +T3)X (1)}
= [Ky (T —1)Kx (T3) + Kx (T —13)Kx (Tp) + Kx (T))Ky (T, — 1)
+ 3 Ky (u +v DKy (u +v)Kx (u +v3)Ky (U +vy),

where Y contains 96 terms of the form shown in which v;, i=1, ..., 4 are zero or a
sum of some or all of £1; for i=1, 2, 3. We can also use Isserlis’ formula to obtain

E{Z 1)t +u)}E{Z (y(1)}
= [Kx (11 ~ 1)Ky (T3) + Ky (T, = 1)Ky (1)) + Ky (1)Kx (1,—13)]%
Hence, we have
Kz () =2 Kx@+v)Kx (u+v)Ky(u+v3)Ky (W +v,y).
Since Ky (u) — 0 as u — oo, it follows from this equation that K m(u) —0asu > oo
and, therefore,

I T/2
lim — | Kz, (u)du =0.
-T2

T—eo

Thus, X (¢) exhibits mean-square ergodicity of the fourth moment.

8.16 By using Isserlis’ formula (5.58), high-order moments of a stationary Gaussian process
can be estimated by estimating only the second-order moments and substituting the
estimates into (5.58) as if the estimates were the true second-order moments.

8.17 The empirical autocorrelation of X (¢) given in (8.84) is obtained as follows:

T/2
Re@2 tim - [ X+ @)
T=e Lt
1 T2 1
= lim — fA(t+1)A ()= {cos(myT) + cos(wg[2¢ +T]+20O)}dt
T—oe L 1 2
T2
=2 lim — [ AC+DA@)drcos(@r)

-T2
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T2
—Re{ lim — .[ At +T)A ()™ 2 dre™ 0T ~i20)
Toe T 7,
2 . ,
% 4 (T)cos(wgT) + %Re{R w(T)e 'mofe—zze},

where R AZ%(T) is defined in (8.87). The probabilistic autocorrelation for X (¢) is obtained
as follows:

Ry(t+1,t) BE (X (¢t +DX (1))
=E{A(t+7)A (t)}—;-[cos(coo‘l:) + E {cos(wg[2t +1]+20)}]

1

= —R, (1 +7, t)cos(wyT) + —;—Re{RA (t +7, t)e ™20 g TINTE (,~i20}y

[\

where the statistical independence of A () and ® has been used. The time-averaged
value of Ry (¢ +7T, ¢) can now be obtained as follow:

T2
<Ry>(T) 2 — + dt
x> 2 lim TJ/ZRX(r T,1)
T2

1
— lim — | R,(t+7, t)dtcos(wgT
2T T——T‘!./Z A( ) ( 0)

T2
—Re{Th_r)n ? _[RA(tH t)e 20 1o VTR { =20}
I V)
T/2
= 2E{lim = [ AC+0A@d) costwq)
T<see X k@
T/2
+ Re{E{ lim 7 IA(t+1)A(t)e tzm"tdt} P I(DOTE{e_,ZQ}}
T &k app

SE (Ry (9)cos(@q®) + S Re(E (R, “(®)e ™ *E (7)) = E Ry (0).

8.18 We first define
Al L lelT2
ki) = 0, otherwise.
Then (8.70) can be expressed as

T/2

1 _JTIIZKX(‘ u)dtdu = -—,UKX(t w)h (¢ (u )dtdu.
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We now use the change of variables T =t — u and then w = u + /2 to obtain

T2 oo
iz [] Ky, w)didu = LZHKX(wu, w)h (T+ 1 )h (u)d Tdu
T e T2,
- %” Ky (w +7/2, w =U2)h (w +T2)h (w —T/2)dwd T.

Since

1, wl<@T —Itly2and It T

h(w +T/2)h(w —1/2) = { 0, otherwise ,

then we obtain the equivalent expression (8.113). The limit (8.114) is not necessarily the
same as (8.113) since the integrand in (8.113) approaches zero rather than <Ky >(T) as
Itl > T:

T-lth2

Ky@t+tv2,t—v2)dt —» 0 as It » T.
—(T-Itl)2

However, if <Kyx>(t) = 0 as T — oo, then (8.114) would be equivalent to (8.113), since
both would equal zero. Thus, the analog (8.114) of (8.42c) is a sufficient condition for
mean-square ergodicity of the mean of a regular nonstationary process.

8.19 For a Poisson process N (¢), we have
E{N@)} =Var{N(@)} = Ar.
For X(T) =N(T)/T, we have
E{MI)} =E{NMYT =},

NT)

Var (A1)} = E (1A -A12) = %E{[N(T)—HF}

L _ A
= T2Var{N(T)} =T

Therefore, we obtain

Tlim E{[MT)-A1%} =Tlim [E {AX(T)} =2AE {MT)} +A?]

= lim [%+x2—2m+x2] =0.

T—o

8.20 Let W(t) & u[x =X (t)]. Then

thy (T) = ulx =X (0)dt = Fy(x)r

O by N

1
T
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is the finite-time fraction-of-time distribution, and
my = E {ulx =X (0)]} = Fy (x)
is the probabilistic distribution. It follows that
Jim E{[Fy()r ~Fx ()P} =0
if and only if
Jim E ([ (T)~my I’} = 0,
which holds if and only if (cf.(8.42))

lim

1
— | Ky (t)dt =0,
T—>o T W()

O ey N

where
Ky(@® =E{W(E+0W(@)} - [E{W()}12
=E{ulx -X (¢ +Dlulx —X ()]} - FE(x) = Fyynx)®, x) — FEx).

8.21 The necessary and sufficient condition for mean-square ergodicity of the distribution is,
from exercise 8.20,

lim

1
— |K w(t)dTt=0,
T—ooe T w(©

O Gy

where

Ky (7) 4 Fyenx @)%, X) — FR(x).

Thus, it is required that

T

. 1

lim T JFX(Z+T)X(I)(X’ x)dT = F(x). *)
0

T— oo

Since we are given that X (f +7) and X (¢) become statistically independent as T — eo,
then

lim Fygipxe*,x)= F(x)
T—00
and, as a result, (*) is satisfied.
8.22 Since Fy(,,) ... x(,) and Fiq ... x¢,) are distinct for X (1) given by
X1@), robability =p >0
X() = { p y=p

X,(t), probability =1—-p >0,

Ch. 8: Ergodicity and Duality



The Random Processes Tutor ¢ 121

then some of their moments must be distinct. Let us assume that the first moments are
distinct:

my, = E{X(t)} # my, = E{X,(t)}.

Since X,(¢) and X,(¢) each exhibit ergodicity of the mean, then the empirical mean of
X (¢) is given by

<X1()>=mx,  probability =p >0
X)>=) X,(t)>=my, probability =1-p > 0.

However, the probabilistic mean of X (¢) is
E{X(@#)} =pmy + (1-p)my,.

Thus, in general E {X ()} # <X (t)> and X(¢), therefore, does not exhibit mean-square
ergodicity of the mean.

8.23 a) From (8.97), we have
T2

m = [ uly-X@)ar

Fy()A 1
x0) Toe T 7y

Using (8.100) and interchanging the order of the time-averaging and differentiation

operations yields

T2
FxG) = lim L [ sty -x (e, *)

i
—> o0 T TR
since

du
29 - 50).
Y
Substituting (*) into (8.99) and interchanging the order of the time-averaging and
integration operations yields

. 1 . 1
iy = lim — yOly =X (¢)ldydt = lim — | x(¢) | o[y —X (¢ )1dydt
Jm 7 | [ Jm 7 ] x|
T2
= T A [ x@a,
T-#% & _pp

which is (8.95), as desired.
b) From (8.101), we have
T2

im l u[yl—X(tl+t)]u[y2—X(t2+t)]dt.
A V7

FxupxyO1>Y2)



122 ¢ Gardner & Chen

Using (8.103) and interchanging the order of the time-averaging and differentiation
operations yields
i T2 3
PO ¥2) = ll_r)nm i[/za =
T/2
= lim ? [ 8Ly =X (01 +0)18ly, =X 1o+ 1)l (*%)

Tiswesi 27y

uly1=X@+0l5— d e X (ty+1)ldt

Substituting (**) into (8.102) and interchanging the order of time-averaging and
integration operations yields

T2 o
Ry(t;=1p) = lim —J [ 180y, - X<z1+t>1dyljy28[yz —X(to+1)ldy, dt
= 4 T2 -
T2
lim — X +)X@,+1)dt.
T_)“’Tf[lz(l Wigg+t)

Using the change of variables ¢ = s — ¢, yields

TI2+t, T2
Ry(ty=1p = lim — [ XG+1-1)X(s)ds = lim — L[ X(s+t,—-1X (5)ds,
~T/2+t, —~ T -T2

which is (8.96), as desired.
¢) From (8.100), we have

A dFx») 1
x0) =
dy T——)oo T

T2

[ 8ly —x()dr 2 0

-T/2

since & = 0. Therefore, F v () is a non-decreasing function of y. Also, from (8.98)
we observe that

uly—-x@)1=0 for y == and uly—-x()]=1 for y =co.

Therefore, we have

T2
Fy(e) = Tim — [ 0dr =
Tow T 4,
T2
Fy(o) = Tim — [ 1dr =1.
T—ooo T—T/2
Similarly, since
82 T2
a a X(II)X(IZ)(yl’ yz)— llIn —_ J 6{)’1 X(t+t1)]6b’2—.x,'(t+t2)]dt >0
Y19Y2 = L

ISX(,‘)X(,Z)(yl, ¥,) is a non-decreasing function of y; and y,. Also,
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T2
5 .1
Fypx )~ —) = Th_r)an %[/2OXOdt =0
T2
F = 1im + [ 1x1dr=1
XX =) = o ) o

Thus, F x () and Fy )X (tp0V 1> ¥2) are valid distribution functions.



Chapter 9

Linear Transformations, Filters, and Dynamical Systems

9.1 Using the results from (9.12) and (9.13) yields
Ky 2 E {(Y-my)(Y-my)"} = Ry - mym{

= HRxyH” — Hmy(Hmy)” = HR,~mxym)HT = HKxH.

9.2 a) Substituting the input

. 1, i=k
X@) =9y = 0, otherwise

into (9.15) yields the desired result,
Y(i)=ii h(i,j)X(,'):j_i By )3k =k, k).
b) Letting k = i — j in (9.18), we obtain
Y(@)= 3 h(i—j)X(j)=k_§ hEXG—k) = 3 hE)X G —k).

k=—c0

j=—co

9.3 For a WSS process X(t), we have my(i) =my and Rx (i, j) = Ry(i —j). Therefore,
(9.23) yields

my(Q) = my @@ h(i) = 3 myG—)h()=my 3, hG),

' j:—oo j:—oo
which is (9.25). Also, (9.24) yields
Ry(i, )=h(@)®Rx(, HN®h()= 2 Rx(-j+I-k)hEh().
I, k=0

Using the change of variables k — ! = r in this equation results in

RyG,j)= 3 Ryli—j—-r)hd+rh()= 3 Ry(i—j-r)h()® h(=r)]

rl=—co r=—co
= [Rxy(k)® rh(k)]k.:i—j =Ry —j),

where r;, (k) is given by (9.27).
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9.4 Since X (i) and Y (i) are related by a causal linear time-invariant filter # and are WSS,
then the two cross-correlations are given by

Ryx (k) =E{Y({ +k)X ()} =E{ih(l)X(i+k—l)X(i)}
=0

= 3 h(DE{X( +k-DX ()} = S (DR (k ~1)
=0 =0

= 3 ARy (1) = Ry (k) ® h(k)

|=—o00

and

Ryy(k) = E{(X(i +k)Y (i)} = E{X (i +k)§h(1)X(i =i 3
[=0

ih(l)E{X(iHc)X(i -} = ih(l)RX(k +1)
1=0 =0

0
= Y h(-DRy(k-1)= 2 h(-)Ry(k —1) =Ry (k)® h(=k).

[=—c0 [=—0c0

9.5 Since ry (k) in (9.27) satisfies

B = 3 hG-OR@) = 3 h(hG+E)  (singi —k =)

[=—c0 j=—00
=1y (k),

then it is an even function and we therefore need to evaluate (9.27) for only k& = 0.
Using (9.35) in (9.27) yields

rpk) = i h(i+k)h(i) = ih(i+k)h(i)

j=—o0 i=1

— Z 12 l+kal - ak"ZZaZl = ak—2-1—a—2- (using (936))
i=1 —a

or, equivalently,

a1
k)= g, —e<k<e,

which is the desired result (9.38).
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9.6 a) Substituting X (#) = &(z —v) into (9.41) yields the output waveform

Y(6)= [, wX@)du = [h(, w)d@ —v)du = h(t, v).

b) For a time-invariant system, we have i (¢, u) = h(t —u ). Therefore, from (9.43) with
Ry (r, s) = Rx(r —s), we obtain

Ry(t, u) = [[h(t =r)hu —5)Ry (r —5)drds.
Using the change of variables t —r7 =z + v and u — s = z in this equation yields

Ry(t, u) = [[ Rz +vIh @Ry (¢ —u =v)dzdy = [Ry(t —u=v)[h () ® h(-v)ldv

= [RX(T)® rh(’t)]'[:t_u =RY(t —u),

where r;, (T) is given by (9.46).

¢) For a time-invariant system, (9.41) becomes
Y(0)= [ h(t—u)X @)du
and the two cross-correlations of the input and output are then given by

Ryy()=E{Y(t+1X ()} =E{ jh(t+’t—u)X(t)X(u)du}

= [h@-u+0Ry@u-1)du = [h@—v)Ry()dv (using v = u — 1)

=Ry (D)® h(7)
and

Ryy(M=E{Xt+DY (@)} =E{ jh(t —u)X (@ +TX (u)du}

= [h( =Ryt —u+Ddu = [h(—)Ry@=v)dv (using v = u —1)

=Ry (D ® h(-1).
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9.7 Using the definition (3.2) of the empirical autocorrelation, we obtain
T2
R, (t) = lim 1 J h(t +0)h(t)dt
Toe T 7p
T
= Y h,h, lim 1 '[ MOt +T) imant g,

n,m =4 _1tn

. sin([n +mJoeT/2)
= 3 hyh,e™ ™" lim :

- Ih |2 inOJoT’
Toe [n+m]oyT/2 %‘ nt®

n,m
since
sin(g woT'/2)

im =9d
T q(l)oT/z q

and h_, =h,.
9.8 The mean and covariance of Z (¢) are given by
Ky(tq, ty) = AG28(t1—ty), ty,t520.
Therefore,

mx(t) =E{X(@1)} =E{h(t)® Z(1)}

oo P t
=FE{ Jh(t—u)Z(u)du} = I h(t —u)mgz (u)du =mz7\,-[h(v)a'v,
o0 0

—oo

from which we obtain

lim my (1) = mz) [ h(v)dv.

t—>o0
—o0

Also,
Ry +7, t)=E{X(t+DX@)} =E{[h(¢+T)Q Z¢ +7)][h()® Z ()]}

h(t+t—u)h(t —v)E{ZW)Z (v)}dudv

ot—yg fi=8

ht +t—u)h(t —v)IKz(u, v)+my(u)mz (v)ldudv

t+T t

t
=02 [[ hc+uh )8 —v)dudy + (myW)? [ h(w)du [ h(v)av,

from which we obtain
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lim Ry(t +7, 1) = Ao2r, (¥) + Iz [ h()dv 1.

t—>c0

—o0

Therefore,

lim Ky(t+7, t) = lim [Ry(t +7, 1) — my (t +Dmy (t)] = A52r, (V).
t—> o0 t—> o0

9.9 Substituting (9.57) into (9.46) for T > 0 yields

oo oo oo 2
@ = [R@+Dh@)d = [P Ve T dr = B eV dr = g—ye'“, T>0.
Since r,,(t) is even (cf. solution to exercise 9.5), then we have the desired result (9.58).
This result is analogous to (9.38) for the discrete-time system.

9.10 In this exercise, we need to interchange limiting and infinite summation operations of the
following type:
N =)

S Y al—k)bk).

i=-N k=—oc

A “
0 Nl—m 2N +1

If b(k) has finite support (or if b (k) is absolutely summable or square summable (has
finite energy) and a (i) is a persistent (e.g., finite-average-power) sequence that satisfies
mild restrictions), then

N
Y, a(i +k) *)

i=-N

= 1
= S bk) i
Q= 2 b®hm —o

k=—oo
provided that the limit in (¥) exists. But if a(k) and b (k) are interchanged, then (*) is
not valid. In fact (*) yields Q@ =0 in this case. This arises in part a where b (k) is a
unit-pulse-response, or a product thereof, and a(k) is a sample sequence of a WSS

process, or a product thereof. Because of this, the desired results can be obtained in this
exercise only by starting with

Y(i)= 3 h()XG —k),
=—oc0
not with
Y()= ¥ X(HhG-)).
j=—o
The analogous situation for limiting and infinite integration operations arises in part b
and dictates that we start with

Y(6) = [h@)X (@ —u)du,
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not with

Y(6)= [he—v)X@)av.

—0o

a) The input-output relation for a discrete-time filter is

Y(i)= 3 h()XG —k).

k=—o0
The empirical mean of Y (i) is defined by
ay & i L Sy@y= 3 1 L S hoX(—k
= = m -
Ay S Hm e 2 O= X ogy X ARXE k)

= X h(kyiy =y 3, hk),
k=—oo k=—o0
which is (9.65). The empirical autocorrelation of Y (i) is defined by
N

3 YG+K)Y ()

i=-N

Ry (k)& 1
yl) = 0 o i

N oo
S S RDORGIX G +k=DX G —))

i=—N j=—oo

= lim
N—>oo 2N+1

= 3 hOhGRy&+j-1).
1,j=—o0
Using the change of variables » =/ — j in this equation yields

Ry(k) = i h(j+r)h()Ry (k —r)

Jor=—co

= 3 [h()® h(=r )Ry k —r) = Ry (k) ® ry k),

which is (9.66).

b) For continuous-time processes, the input and output of a filter are related by

Y(t) = [ hG)X (@ —u)du.

—o0

The empirical mean of Y (¢) is given by

fy = <Y (0)> = < [ h(u)X (¢ —u)du>

—o0

= [he)<xX(@-u)>du = [h@yigdu =iy [ hG@)du,

—oo
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which is the desired result (9.67). The empirical autocorrelation of Y (¢) is given by

Ry(1) = <Y (¢ +DY (0)> = <[ [ @) )X (¢ +T1=1)X (¢ = )dudv >

(——.8

Jh(u)h(v) <X +T—u)X( —v)> dudv

$

= H’l(u)h(v)ﬁx(wv —u)dudv

= [[he + )Ry (t-0)dvdo (using u —v = o)

= [r,(0)Ryt-0)do = Ry () ® r,, (1),

which is the desired result (9.68).

¢) For an asymptotically mean stationary process, the autocorrelation of Y (¢) is given by

Ry(t+7, 1) = E(Y( +DY ()} = [ h@)h 0)E (X (¢ +1=u)X (t —v)}dudy

—o0

= [[R@R Ry ¢ +7=u, 1 =v)dudy.

—co

Therefore, the time-averaged autocorrelation is given by

<Ry>(M) = <Ryt +7, 19> = [[ R (v) <Ry (t +T—u, 1 =v)> dudv

—oo

= [[ @) <Ry>(@+v —u) dudv = <Ry>®) ® 1,
as in part b. Similarly, we can show that

=

<my>= <my> f h(t)dr.

—oco

9.11 a) The responses Y {(¢) and Y,(¢) are related to the excitations X {(¢) and X,(¢) by
Y1) = [ @)X ¢ —w)du  and  Yy) = [ hy)X(t —v)dv.

For jointly WSS processes X(t) and X,(¢), Y (t) and Y,(¢) are also jointly WSS
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with cross-correlation given by

Ry p (0 = E (Y10 +0)Y (1)} = E {J[ hy@)hy)X 1t +T~u)X ot —v)dudv )
= [ h1)hy0 )Ry i, (t+v =1 )dudv

= [[ 1, +0Wh, )Ry x,(1-0)dvd s (using u — v = 0)

—oo

= Ofr 1ha(ORx x,(T—0)d G = Ry x (V) ® 1y 5, (V),
where
T n(T) = T h (¢ +0)ho(t)dt.
b) The excitations and responses X (t), W (¢), and Y (¢) are related by
W)= Thl(u)X(t —u)du and Y(@)= ]:hz(v)W(t —v)dv.

— —00

Therefore, for a WSS process X (¢), W(¢) and Y (¢) are jointly WSS, and the cross-
correlation of W (¢) and Y (¢) is given by

Ryy (@) = E{(W(t+DY (1)} = E{ [ hy0)W @ +DW (t —v)dv )

= [ hy)Ry (T+v)dv = Ry ()@ hy(=1)

—oo

= Ry (D) ® 1, (V@ ho(-1)  (using (9.45)).

9.12 Since H is statistically independent of X, then

Ry() = E{Y@+DY (1)} = E{[[ H(@ +t~u)X @)H (¢ —v)X (v )dudv }

—oo

= [ E{H @ +1-u)H ¢ =v))Ry (u =v)dudv.

Lettingt —v =w and ¢t —u =w — z results in
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Ry(@) = [[ E{H @2 +w)H (w)}Ry (2)dwdz

)

= [E([H@=z +w)HW)dw Ry (2)dz

—o0

= [E(ry(i-2))Ry(2)dz = Ry()® E {ry ().

—oc0

9.13 The input and output of the system are related by

YO)=h@)® X@#)+N@)] = J.h(t —u)[X (u)+N (u)ldu.

—oo

Using the assumption that N(¢) is orthogonal to X (¢), we obtain the following cross-
correlation of Y (¢) and N (¢):

Ryy(M)=E{Y(t+TN@)} =E{ jh(t +T—u)[X )N (#)+N@)N(t)ldu}

= [h(+1-u)Ry(u —t)du = 02 [ h(t +T—u)8(u —t)du = 02h (D),

—o0

which is the desired result.

9.14 Since la| < 1, then from (9.83) we have
2 _ a2 2
lim Ry(,i)= lim [a¥Ry (0, 0) + ?+-%—1= -
i—>o0 i—>oo {—g* 1-4?
which is equivalent to Ry (0) in (9.40). Using (9.79) with k =i — j fixed, we obtain
. k
lim Ry(i, j) = lim a’7Ry(j, j) = lim a*Ry(j, j) = 6*—4—,
i—o0 i—oo J—oo 1—a2

which is equivalent to (9.40).

9.154) With j =0,i — i — 1, and X(0) = 0, (9.86) yields

X@) = iﬁ‘i O, m+1)bm)U (m).
m=0
Substituting this equation into (9.85b) with d (i) = 0 yields
i1 i-1
Y(@)=c@) Y, @G, m+1Dbm)U@m) =73, c(@)®3, j+1bG)UG),
m=0 j=0
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which reveals that, for the form (9.150), the unit-pulse response 4 (i, j) is given by
(9.151).

We first express (9.152) in the form of the state-variable recursion (9.85):
X@+DH)=A@XE)+b@)UG), 120
Y@)=c@)X(3G), i 20,

where

ol
i+1’

Then, we use (9.87) to obtain

AG) =

bGi)=P, cG)=1.

1 j=i
O ) =1 j i
i

’ j<i,
and we use (9.151) to obtain the unit-pulse response:
K, J)=c@)®G, j+Db() =Bt a7, 0<j<i
i
Applying expectation to (9.152) yields

myG +1) = —2—my (i) + By (i), i 20.
i+1

Using (9.152), we obtain for the variance of Y (¢), the equation
Ky(G+1,i+D)=E{[Y(+1)—my(+ D13

= E{[=2- 1y ()= my (0] + BLU )=y O)I] ).

Then expanding the square and using (9.153) yields

KyG+1,i+1) = 2Ky G, i)+ B0, i 0. *)

i+1

As an alternative, we can use the general solution (9.92). For this first-order system,
we have Y (i) =X(i), AG@)=0i/(i +1), and b(i) = B. Therefore, (9.92) yields the
same result (¥).
Using the result from b, we obtain the summation formula for the mean and variance
of Y(¢),

-1

i-1 i LT
my@) = E(YO) =E(3, hG, NU(D) =EBY, eI L1u ()

j=0 j=0

-1
BT oLy (), i >0
j=0

and
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KyG, i) = E (Y ()=my ()P}
i-1 L
=E(p? Y, of Va1 "“[U(;) — gy G)IU () =y (]}
Jj, k=0
B2 ’E oi-i-lgi-t-14+1 k+1KU(I k)

jkO i

= (Boy? z @711y s

9.16 To obtain (9.90), we simply take the expected value of both sides of (9.85a) to obtain
mx(@ +1)=E{X(@+1)} = AQ)E {X@)} +b@)E{UG))
= A@)mg() + b )my (@), i20.

To obtain (9.91), we simply multiply (9.86), with i replaced by i — 1, by U (j) and take
the expected value of both sides to obtain

i-1
E{X@OU ()} =@, HE{XGIUG)} + X O0, m+Dbm)E{Um)U)}, i >,
m=j
or, equivalently,
i-1
Kxy (i, j) =@, Kgy(, j)+ X @G, m+1Dbm)Ky,(m, j), i>].
m=j
Now, using the conditions (9.88) and (9.89) in this equation yields
Kxy (i, j)=0®G, j+1Db(y), >,
which is the desired result (9.91).

By analogy with the method used to obtain (9.80) from (9.77), we can obtain (9.92) from
(9.86), together with the assumptions (9.88) and (9.89), as follows:

Ky +1,i+1) = E{X(@ +D)XT (@ + 1)}
= E{[®G +1, j)X(j) + ﬁq>(i+1, m + Db(m)U (m)]
m=j
X [@G +1, ))X(j) + i_¢(i+1, n+Db)U @I},
since the cross terms are zero by virtue of (9.88). Thjus,
Kx(+1,i+1) = ®G +1, ))Kx(j, O (@ +1, j)
+ zi:¢(i+1, m +1)bm)KE, (j, m)®T G +1, j)

m=j

i
+ @G +1, )Y Ky (G, m)bT ()@ G +1, n+1)
n=j
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+ 21‘, i @@ +1, m + 1)b(m)Ky (m, n)b? (n)® G +1, n +1)

n=j m=j
= @i +1, )HKg(j, HPTG +1, j)

i
+02 Y@ +1, n+1b@)bI (n)®T (i +1,n+1), i2j 20,

n=j
since the middle two terms are zero by virtue of (9.88) and since the last term simplifies
with the use of (9.89). Letting j =i and using (9.87a) now yields

Kx(i+1,i+1) = AG@)Kx(@, i)AT (@) + 62b(@)bL (i), i >0,
which is the desired result (9.92).

9.17 For a time-invariant system,

o, j) = O ).

I, i=j
@= A7l 0>

@G —i)= (A7) = A/,

Therefore, (9.87a) yields

From (9.87b), we obtain

Putting these two results together yields the desired result (9.154)-(9.155).

9.18 @) Since X(¢) is defined in (9.157) by

X,@) X)) =Y ()

A
X@) £ X,0) O X, (i)=Y (i+1) =X, +1),

then (9.156) can be expressed as
X +1)=X,0)
Xo(i+1)==2X,(i) = X1()+3U(@)
Y(i)=X,@), i20

or, equivalently,

X G +1) 0o 1] x,) 0
= + U@G), i =20
X, +1) =2 =1 || X,(i) 3
X,@)
YG)=[1 0] i 20,

X))
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which is of the form in (9.85) with 4 = 0 and A, b, and ¢ given by (9.158).

b) Taking the expected value of both sides of (9.156) yields the following difference
equation for the evolution of the mean,

my(i +2) + 2my (i +1) + my (i) = 3my(i) = 3.
The difference equation for the evolution of the variance can be obtained as follows:
Ky(i +2,i+2) = E{[Y (i +2) — my(i +2)I*}
= E{(=2[Y G + D) =my (i + D] = [Y () —my ()] + 3LU () —my () )]))
=4Ky(i+1,i+1)+ Ky, i)+ 2Ky (i +1, i) + 2Ky (, i+1) + 903

(using Kyy; (i, j) =0, j 2 i-1). Thus,
Ky(i+2,i+2)=4Ky(+1,i+1) +Ky(, i) + 4Ky (i +1,i) + 36, i 20,

since Ky(i, j)=Ky(j,i). As an alternative, we can obtain the same result by
substituting (9.158) into the general solutions (9.92), (9.95), and (9.96).

9.19 Using (9.159) and (9.160) to differentiate X (¢) in (9.107) yields
d d |
X() =X(V)E¢(t, v)+ 7 J. O, w)bw)U(w)dw, O0<v <t
v
t
=XW)a@)oE,v)+b@)U()+a(t) j D@, w)b(w)U (w)dw
v
t
=a@®)[X(W)®¢, v) + j O, w)bwW)Uw)dw]l+ b (@)U (¢)
A4
=a@)X@)+b@)U(@), t =20 (lettingv =1),
which is (9.103). Indeed, (9.107) is a solution to (9.103).
9.20 Letting ¢ > u >v 20, multiplying (9.107) --- with its mean subtracted --- by
U(u) — my, and taking expected values yields

Kxy(t, u) = E{[X()—myx][U@u)—-myl}
=O(t, vIE{[X(v)-mx ][U (u)-my]}

t
+ [ @G, w)b W)IE {[U (w)—my LU () —my 1} dw
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t
=®(t, vV)Kyy (v, u) + j D@, w)b W)Ky(w, u)dw.
v
Using the conditions (9.105) and (9.106) in this equation yields

t
Kyy(t, u) = [ @, wbw)dw —u)dw, 0<v <u<t,
v
which is (9.109).

9.21 @) The autocovariance of this process is given by (9.114),

(I)(t, M)KX(M,M), t2u20,
Ky (t, u) = Du, t)Ky(t, 1), uztz0,

where from (9.108)

t
o, u)=exp{f a ds} =e*W, 12u20

u
Du,t) = exp{J. ads}=e® D y>t20
t

or, equivalently,
@, u)=e"#l ¢ u>0. (*)
Furthermore, the variance of X (¢) must satisfy the differential equation (9.117),
Ky(t, 1) =2aKy(t, 1) +b% 120
with the initial value given by Ky (0, 0) = 0. The solution to this differential equation
is
b? 2at
Ky(t,t)y=—"—[1-e"%], t20,
x (0, 1) = =1 = 2]

and it follows from (9.114) and (*) that the autocovariance is given by

b2
——E——[e”(’_“) — ettt t2u 20

a

2
_Z_[ea(u—t) _ ea(u+t)]’ u>t>20,

a

Kx([, u) =

which is equivalent to (9.161).
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b) Letting ¢, u — o in (9.161) yields (since a < 0)

lim Ky(t,u)= lim k[e®!74l - a(+u)] = geali=u],
t,u—>o0 t,u—>o0

which is the desired result (5.22).
¢) For a — 0, applying L Hopital’s rule to (9.161) yields
alt—ul _ ga(t+u)
2a
~ lim b2 It —ule®t—#l — (7 +y)eC+)

a—0 2

b? b?
=—7[|t—u| —(@+u)] = —2—min{t, u}, t,uz=0,

lim Ky (t, u) = lim -b2<
a—0 a—0

which is the autocovariance for the Wiener process.

9.22 a) Using X(¢) as defined in (9.163),

ol [ro] xo=ro
X = = . .
o]t T R0=T0=X0,

(9.162) can be reexpressed as

X,(t)=X,(t), 120
Xo0) = —2X,¢) - Bx,)+ =U@), 120
2 Lc! L"? Lc 7 -

Y()=X,), t=20,
which is of the form of (9.119) with A(¢), b(t), and c(¢) given by (9.164).

b) Directly applying expectation to (9.162), and interchanging the expectation and
differentiation operations, yields

my (t) + 6my (t) + 8my(t) =8, ¢ 20.

For the given conditions, Ky (t) = 8(t) and K, (f,v) =Kyy(t,v)=0, t <v, the
differential equation for Kx(¢, t) is given by the general formula (9.129):

0 1 0 -8 0 O
+
0 o4

Therefore, Ky (¢, t) can be determined once the differential equation for Ky(z, ) is
solved.

Ky(t, r)=[ Kx(t, 1) + Kx(t, t)[

1 -6
It follows from (9.130) that

Ky(t, 1) = c(t)Kx(, )" () = Ky (2, 1).
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9.23 a) The correlation matrix for Y in (9.165) is given by
 Ry=E{YY"} = ¥E {(XXT}¥7 = YRy¥T

23 PR, YRRV, - - - YIRyY,
: 24 IR, YIRyY, - - - PIRyYP,

L YIRyY, YIRyY, - - - YIRyY,
RX\Pi = }\'l' ‘{’l (Or RXlP = A\P)
and

1, i=j
‘P,-T‘I‘j={0’ P %], (or YT =1),

then this correlation matrix becomes

i T
o, G R, - . - QT
METY, LYY, - - - AP,
R, = : . e
METE MEE, - - LY,
=diag{Ap Ay ..o M AA (or PTRRY = AYTY = A),

for which A; 22, >---2=A,. Therefore, {¥;} are mutually orthogonal and their
mean square values are in descending order.

b) The correlation matrix for Z is given by
R, = E{ZZ"} = OF {XX7}@” = OR;07 = YT A VPR YT A129,
It follows from part a that WRxW’ = A. Therefore,
Ry = PTA12AN 129 = pTY = 1.
Hence, {Z,,Z,, . .., Z,} are mutually orthogonal and their mean square values are

all unity.



Chapter 10

Spectral Density

10.1 @) Using the change of variables T = ¢; — ¢, in (10.7) yields

E {X(fl)i* (fZ)} = J'J' e—i21t(flt1—f2tz)RX(t1 —tz)dtldtz
= [[ eSOt IR (ydar,
= [Ry@e ™™ gq [ gy,

=8y (f )8(f 21 1)s

which is the desired result (10.8)
b) Substituting (10.11) and (10.6) into the left-side of (10.142) yields
f1 f2
XEF ) XDty = [Rwdv - [Xwyv

f1 f1 e

= [Rwav= [ [x@)e2™ drdv
f2 f2—oo
o —i2nfyt _ —i2nfyt

= [x@E——-==2 lat,
- i2mt

which is the desired result (10.142)

¢) To simplify the notation, we use the change of variables f,=f — A/2 and
f1=f + A/2. Then, using (10.142), we obtain

MS A E{IXD(F ) = XV 12

— J'J E{X ()X (s)} sin(mtA?) sin(mAs) e‘iz"f("s)dtds,
ol Tt s
where we have used the identity
oiTA _ ,-iTAt

= sin(mA?).
2 sin(mAt)
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Thus,

MS = J sin(mA?) _[[R ¢ - S)e_iznf(t_s)] Sin(TCAs)dsdt
T e & s ’

—oo

which is of the form

o

MS = [a®)b@)® a()]" dr.

—o00

Using Parseval’s relation and the convolution theorem, we obtain

MS = [AMB®AWI dv,

—oco

where
1, vl < A2
AW) = and BW) =S8y —f).
0, otherwise
Therefore,
A2 —f+A2
Ms = [ syv-frav=[ Syadn
-A2 —f-A2
f+A2
= j Sy (Wdu ( since Sy is even)
f-N2
fi
= [Sxadu,
fa

which is the desired result (10.143).
d) With the use of (10.12), (10.144) can be expressed (formally) as

f
FEOF) = [HWZ v
Differentiating both sides of this equation yields
d d .
V(f)= YD) = = |HWX v)dv =HFX{),
()= g7 = 25 [HORWy = HER ()
which is (10.3), as desired.

10.2 a) To verify Parseval’s relation (10.145), we proceed as follows. Substituting

g)= [ G af



142 ¢ Gardner & Chen

into the left member of (10.145) and interchanging the order of integration yields

Tg(t)h*(t)dt = TG(f)Th*(t)eﬂ“ffd:df

= (e [hwe ™ ar af = [G(FHH* (F)df,

which is the right member of (10.145).
b) Since from (10.20) we have

oo

[r@e™dr=1HMPE  and  [Ry@e 2™dt=Sy(v),

—00 —co

then by using Parseval’s relation we can express (10.23) as

oo

[ ru@)Ry@)du = [ 1H WSy W)av,

—oo

which is the desired result, (10.24).

10.3 The autocorrelation for X (¢) is given by
Ry(M=E{X@+DXO)} =E{[Zt+1)-Z(t +T-MIZ{)-Z(t -A)]}
=E{ZG+TDZ@)-Z@+T1)Z({t -A)-Z(@+T-A)Z(@)+Z(t +T-A)Z( —A)}
= 2R, (t) = Rz(T+A) — Rz (1—A) = 0[28(1) - 8(t+A)—3(t— A)].

Fourier transforming Ry (7) yields the spectral density for X (¢),
Sx(F) = | Ry@e=2¥ a1t = 202[1 - cos2nf A)]

This result can be understood in terms of linear filtering by interpreting Z (¢) and X (¢) as
the input and output of a linear filter,

X@)= [h@t-vZ@dr,

—o0

with impulse-response function
h(t) =0@) — 8(r —A).
The corresponding transfer function has squared magnitude
H(f)I?= 11— e 222 = |i2¢7 ™ Asin(nf A)I%= 2[1 —cos2nf A)].
Thus,
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IH (f )25, (f ) = 202[1 —cos(2rf A)].

10.4 @) Since from (6.40) the Wiener process W (¢) can be expressed as
t
W) =[Zwdu, 120,
0
for which Z(¢) is white noise, then Y (¢) = W () — W (¢ —A) can be expressed as

t A 3
YO)= | Z@du =[2G -w)du = [h@)Z @ —u)du,
Za 0 et

t
where

1, 0fu<A
h(t) =

0, otherwise.

Hence, Z(¢) and Y (¢) can be viewed as the input and output of a linear filter with
impulse-response function % (¢). Then, since the input Z(¢) is WSS and the filter is
stable, the output Y (¢) is WSS. The spectral density for Y (¢) is given by

2 2
sin(mf A) | _ 5 2rq 1
e " } = 200°[1 —cos(2nf A)]{ } .

2nf
The spectral density for Y (¢) is similar to that of X (¢) in exercise 10.3 because Y ()
and X (¢) are related by dY (t)/dt = X (¢t) (cf. part b).

b) Fourier transforming X (¢) = dY (¢)/dt yields
X() =i2nfY(f)
(assuming for the moment that X (¢) and Y (¢) are Fourier transformable). Therefore,
X(f) and Y(f) are related by a linear time-invariant transformation with transfer

function H (f) = i2nf . Consequently, the spectral densities for X (¢) and Y () are
related by

Sy(f) = lH(f)IZSz(f)=0t2[

Sx(f) = H()I2Sy (f) = @nf Sy (f).

=2\l

10.5 a) Fourier transforming Ry (T) = e yields the following spectral density:

oo

Sy(f) = J.RX(T)e—ian‘td,t = J.e—ZM‘E[e—iZItf'rd,r

—00 —oo

0 oo
— JeZXte—iZRfrd,c + Je—zme—ﬂnf'cd,c
0

—o0

1 N 1 - 4\
A-i2nf  2A+i2nf  2mf)?+ (A%
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b) Use of the result in part a with A = o./2 yields the Lorenzian spectrum
a | 2620,

S - 2—| P A —
x(f)=0 Qrf )2+ QA e @rf)* + 02

for the Ornstein-Uhlenbeck process.

10.6 Substituting (10.34) into (10.38) yields

12 )
Re(k)= | Sx(Pe®Frdf = 3 Ry(D) I o—i2nfl i2nfk g
-1/2 |=—oc0 110
= i RX(I)M =RX(k).

nk —1)

l=—o0

Thus, (10.34) and (10.38) are indeed a Fourier transform pair.
10.7 For this derivation, see the solution to exercise 7.4.

10.8 Equation (10.51) can be expressed as

2
_ | sin(@Tv) | _
Wirv)=T {———-—ETV } =THW)H (v),
where

sin(n7'v)
nTv

Inverse Fourier transforming W {,7-(v) and using the convolution theorem yields

Hy) =

[Wirwe ™y = Th@)® h),

—o0

where

VT, ItI<T/2

_ i 21Vt -
h(t) = JH W)e'“™idv = { 0, otherwise ,

which is easily verified by Fourier transforming 4 (t). Therefore, we have
wr (1) = Th(T)® h(T),

which leads to the desired result (10.49) since the convolution of a rectangle with itself
is a triangle.
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10.9 Since X (¢) exhibits mean-square ergodicity of the mean and Sy (f) does not contain an
impulse at f =0, then (see (10.141)) we have my = 0. The mean of the output of the
filter with input X (¢) is also zero, since

my =E(Y(@®)) = [ h@)E{X (@t —u)}du = 0.

—oco

The variance of the input is given by
Var (X ()} = E{X%(0)) = Ry(©) = [ Sy(F)df =BS,,

Since the input and output spectral densities are related by

Sy(f) = IH(F)2Sx (f),

and the variance at the output is given by

Var (Y ()} = E{Yt)} = Ry(0) = [ Sy(F)df ,

then

oo b
Var (Y())) = [ IH(F)PSy (f)df = [a -1 uB)sdr
Zeo b

bSo2 - bIB], bl <B
= |BS,, bl > B.

10.10 Let the input to the system be denoted by X (). We have

6% =i

E{X@}=0 and Rx(-j)=E{X@X()} ={O,
a) Since the input spectral density is
Sx(f)= 3 Ry(k)e Wk = o2
k=—c0

and the transfer function is

oo ) K
H({)= E h(k)e—ﬂnfk = Ee—zank
k=—c0 k=0

1 — e 2 &) gin[nf (K +1)] o-infK

1 - e i20f sin(mf )

then from (10.33) the output spectral density is given by
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sinfnf K +1)] | -

sin(tf )

Sy(f)=Sx(FHE)I* = 02[
The output variance is given by

Var (Y (i)} = E{(Y%(i)} = i i h(i —k)h(i —DE{X (k)X ()}

j T S

= 3 S hG-khG-DRy(k 1)

k=—c0 |=—c0
(-] K
=062 Y h%i-k)=02Y hk)=(K+1)o%
k=—c0 k=0

Note: This approach is simpler than that based on the formula
12

Var(Y()} = [ Sy(F)df.

=172

b) Since the input and output are related by

Y()= 3 hG-bXE),

k=—00

then the cross-correlation of the input and output is

Ryx (i —=j)=E{Y()X()} = i h(i —k)E{X (k)X ()}

k=—o0
o0 i
= Y h(i—-kRyk—-j)= X Rxy(k—j)
k=—c0 k=i-K
- ¥ oza(z)={°2’ 0<i-j<K
I=i-j-K 0, otherwise.

The cross-spectral density is obtained by Fourier series transformation:

oo y K i sinf[rf K +1)] _;
S je Ryy (k)e 12k = o2e itfk = 2200 = 7 M o -infK
yx (f k=2 X k§0 sin(rtf )

10.11 Since the output Z (i) can be expressed as

i i-k
Z@)=Y@)-Y(-k)= TX(G) - X X()

j=0 j=0
i k-1 oo
= ¥ X()=X Xi-j)= X X0-)Hh(),
Jj=i—k+1 j=0 j=—oo

where
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) 1, 0<i<k-1
h(i) = 0, otherwise ,

then we can identify £ (i) as the unit-pulse response of this discrete-time system.
Consequently, the transfer function is given by

H()= i h(j)ei2nfi = SINRLFK) —inf k-1)

jomes sin(nf )
Therefore, the asymptotic spectral density of Z (i) is given by
2
. k)
S = [H(F)I2S _ 2| sin(fk) ]
z(F) = H{)ISx (f) le ——

The variance of Z (i) is given by

k-1
Var{Z(@i)} =Var { X (i -j)} = ko3.
j=0

10.12 a) Since Ry (k) has even symmetry,
Ry(k) =E{X(+k)X(@)} =E{X@)X{+k)} =Ry (-k),
then so too does Sy (f):

Sy ()= 3 Ry(®)e 2 = 3 Ry(—k)e 2¥* = 3 Ry(1)e 2 = Sy (F).

f=—co k=—o0 I=—co

b) The periodicity of Sy (f) is easily verified as follows:
SX(f +n)= Z RX(k)e—iZTC(f+n)k — Z RX(k)e—iZthke—-iZT\:nk =SX(f)
k=—co k=—c0
forn =0, £1,£2, .. ..

¢) Analogous to the characterization of the PSD for continuous time in Section 10.2.2,
we have for discrete time

. 1 =
Sx(f)= Tll_f)nw 7E{|Xr(f)|2} 20,

where

1 X ,
X (k)e ik T =2N + 1.
2N+1k=2_N Cele

X ()=

Thus, the PSD is nonnegative.

10.13 From (10.19), the spectral densities for Y (¢) and Y ,(¢) are given by
Sy, (f) = IH{(F)Sx (f) and Sy (f) = IHy()I%x,(f).
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10.14

10.15

Since the cross-correlation of Y {(¢) and Y ,(¢) is given by

Ry y, (V) = E{Y1(t +T)Y 5(1)} = H B )ho()E (X (¢ +T—u)X5(t —v)}dudy

= [[ R 1)y )Ry ., (t+v —u)dudy = hy(T)® hy(~T)® Ry x,(T),
then we obtain the following cross-spectral density for ¥ {(¢) and Y »(¢):

Sy, (f) = JRxlxz(T)e_iznfth = H (f )H5(F)Sx x,(f )-

Thus, the coherence is given by
Sv(f)  H(OH () Sy x,F)
[Sy (F)Sy,(F)IM? 1H (FIIHK) [Sx (F )Sx, ()12

Pyy,(f) =

= px x,(F )expli[0:(F) — ()1},

where

Hy(f) = IH(lexp{io)(F)}  and  Hy(f) = [Hy(f)lexp{id(f)}-

Hence, the coherence magnitudes are equal:

Py,r,(F)I = Ipx x,()I-

One way to identify H (f ) by using Syy (f ) and Sx (f) is to form the ratio

Syx (F)
Sx(f)

It is shown in Chapter 13 that H (f) is the best-fitting linear time-invariant model for
the unknown system in the sense that H (f ) minimizes the mean-squared error between
the outputs of the unknown system and the model, when both have the same input
X ().

H({f) =

It follows from the model for Y ;(¢) and Y ,(¢) that (cf. solution to exercise 10.13)
Sy (f) = IH(F)2Sx (f ) + Sy ,(F)
Sy, (f) = Hy(f)PSx (F) + Sy, (f)
Syr,(f) = Hi(FH(F)Sx (f).

Therefore, the coherence magnitude is given by
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1Sy, r,(F)
[Sy,(F )Sy,(f NV
) [H () IH o)1y (F)
H(OPSy (F) + Sy (OIPLH A PSx (F) + Sy, (F N2
If, for some cutoff frequency f o, we have

\H;(f)2Sx (f) > Sy (f) for f < fo, i=1,2

Py, (F)1 &

and
\H, (F)PSx (F) < Sy,(f) for f > fo i=1,2,
then
IH () 1Ho(f)ISx ()

= =1 f <
O L Y PS, FOTPLH A S (T2 or f=Jo

and
- IHl(f)IIHz(f)IS;flgf) P
[Sy,(F S, ()]
Also, when the signal X (¢) is absent, we have
Py, () = Smanf) for all f.

o [Sn,(F )Sw,(F 12
Therefore, the coherence magnitude can be used to detect the presence of the signal
X ().

10.16 a) The empirical autocorrelation for the signal in example 1 is given by
T/2

Ry (1) = lim d. X (@ +0)X (2)dt
X
Toe T 7p
. T2 .
= lim — j —[cos(2nV 1) + cos(4nVt +2nV 1+20)]dt = lcos(27tV1:).
Toe T 7,2 2

Fourier transforming Ry (t) yields the empirical PSD
s v [f —ionft g, _ 1 1
Sx(f)= [ Ry(@e dt=28(f ~V) + 58 +V),

which is easily verified by inverse Fourier transforming. The probabilistic auto-
correlation for X (¢) is given by

Ry(D)=E{X@t+1)X@)} =E {%[COS(ZRV‘E) + cos(4nVt +2nV 1+20)1}
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oo 0 T
= 2 [ cos@mvn)fy 0)dv + = [ () [ 2—cos(mvt +2mv T+20)d6 dv
27 v ML K7

8 %__Lcos(va Ofy ).

Fourier transforming Ry (T) yields the probabilistic PSD,

oo oo

Sx(F) = [Re@e ™= [ [ Lcos@rynifyv)e > av

—oc0 —00 —00

= LB =v) + 8 +9)fy )y = () + fy -F).
47 4 4

Also, since X(t) is WSS, we have the following alternative approach to obtaining
Sy (f) (cf. (10.63)):

Sx() = ESx ()} = [158¢ =)+ 580 +)1fy )b = }zw) + %fv(—f)-

b) Using a similar approach to deriving Ry (t) with V replaced by f, + V in (10.70)
yields

Ry (1) = % [ cos(anif g+ v 10y (v)av.

Fourier transforming Ry (T) gives the PSD,

Se(f) = [Re@e ™M= 2fy (f =Fo) + pfv(f ~fo)-

10.17 Using the change of variable ¢’ =¢ + 7/2 in the left member of the stated identity

yields
1 T/2 1 T/2+7/2
lim — [ RyG+t,0)d = lim — [ ReG'+u2, t'~2)dr"
T T 7p Toe 4 riw

Since T — oo, then T/2 +1/2 = T/2 and -T/2 + /2 — —T/2; therefore, we obtain
the right member of the identity.

10.18 For a regular nonstationary process X (¢), we obtain from (10.1)

Ry(t+7, 1) = E{Y¢+DY () = [[ h)h0)E (X (¢ +1~u)X (t =v))dudv
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oo

= [[ h@h IR (¢ +T—u, £ =v)dudy.

—oco

It follows that the time-averaged autocorrelations for X (¢) and Y (¢) are related by

T2
<Ry>() = lim — jRY(tH t)dt
e TR
o0 T2
=H hGh(v) lim — L [ Ryt +t—u, t =v)dr dudv
roe T 3,

= [[ h@h () <Ry>@+v —u)dudv = r, (1) ® <Ry>(7)
and, therefore, the time-averaged spectral densities are related by

<Sy>(f) = [ <Ry>@e 2T = [H(f)P<Sy>(f).

10.19 The empirical autocorrelation for the signal in example 2 is given by
T2

Ry(@ = lim — L[ X @ +0x()d
== T
T2

Thm ? J. A(+1)A (t)— [cos(2mf ¢T) + cos(4mf of +2Tf T+ 20)]1dt
= L

T2
= %cos(an o®) lim 7 j A +TA(@)dt + 0 (using the stated assumption)

o= d o
1~
= ER 4 (T)Cos(2f 7)),
which is (10.79). Fourier transforming IéX (7) yields the empirical PSD (10.80),

$¢() = [Ry@e P dT = 28, =0 + 784 F +70)

which is easily verified by inverse Fourier transforming. The probabilistic auto-
correlation for this signal is given by

Ry(t +7/2, t —=1/2) = E (X (t +TU2)X (t —1/2)}

=E{A@+T2)A(t —1/2)} E[cos(21tf o) +cos(dmf ot +20)]

R4 (T)[cos(2nf ¢T) +cos(@mf o +20)].

11
2
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Fourier transforming Ry (¢ +7/2, t —7/2) yields the instantaneous probabilistic spectral
density (10.82),

Sx(@. f)= jRX(t +1/2, t —12)e ¥ d1

LA =F )+ pSa U +F ) + 354 (F deostdnf o +20).

10.20 Using the result in exercise 6.12, we obtain the following autocorrelation for the

asynchronous random telegraph signal:

Ry(t+7,t) = E{Y(¢ +T)Y ()} = E {X (¢t +T)X (¢) }cos(2nf o[t + TDcos2nf ot )
=Ry (’c)%[cos(an oT) +cos(4nf o +27f oT)],
where

Ry()=e 1 for ¢t+71>0 and ¢ >0.

Therefore, the time-averaged autocorrelation for Y (¢) is given by
1 T 1
<Ry>(0) = lim —[ Ryt +7, t)dt = =Ry(Wcos@nfv) for 1T>0.

Since <Ry>(-) must be an even function, this result holds for T < 0 as well. Fourier
transforming <Ry >(7) yields the time-averaged PSD for Y (¢),

<Sy>(f) = [ <Ry>@e 21
1 a0
2 2nf)? + (20)?

® %[B(f—fo) + 8(F + )]

A A
= + s
AnX(f —f )t + 4N2 AT +f)* + 4A?

10.21 The transfer function for the circuit in Figure 10.6 is
Yify R,(i2nfR,C +1) R, i2nfR,C +1
X(f) Ry+R,+i2nfR\R,C Ry (1+R,/Ry) +i2nfR,C

H(f)=

and the squared magnitude of H(f) can be expressed (using f; = 1/2nR,C <
f2=12aR,C) as

R\ 1+ G R, - i
Hf)P=|-= N .2 R .
b [Rl} (I4RR )2+ (FIf 2 | Ry 1+ /fpT for R,<R,

Ch. 10: Spectral Density



10.22

10.23

The Random Processes Tutor ¢ 153

Therefore, we have

R,)?
Sy(f)=|H(f)|25x(f):So-k-— for f <fo
1

which indicates that the high frequencies (well below f,) are restored to the signal
(however, all frequencies passed are strongly attenuated since R, < R ).

For nonoverlapping Sy (f ) and Sy (f ), we have

Syx (f) = NSy (F)Sx Fpyx (f) = 0.
Since |pyyx (f)| < 1, this implies that Syy (f ) = 0 and, therefore,

E{Y(t+DX(1)})} = Ryx(@ = [ Syx(F)e'2¥df = 0.

Therefore, Y (¢ +7) and X (¢) are orthogonal for all T when the spectral densities Sy (f)
and Sy (f ) do not overlap.

This circuit in Figure 10.7 is equivalent to a thermal noise voltage source of value
N (¢) (in volts) in series with a noise-free resistor of value R and an inductor of value
L. It follows that the transfer function from the noise voltage N(z) to the inductor
current X (¢) is given by

2D hpy = —— Lo fo= ur-

N () R+i2nfL R 1+i(flfg)
Since, from (10.97), Sy (f ) = 2KTR , then the PSD for the inductor current is given by
2KT 1
Sx(f) = H()PSy(f) =
X N R 1+ (fify?

and the autocorrelation is therefore given by

Ry (T) = JSX(f)exp{iZEf‘c}df = ZTKTnfO exp{—2nfltl} = %exp{—%ltl}.

ax ()

Also, since Y(t) =L , then the transfer function from the current X (¢) to the

voltage Y (¢) is given by
—}:’—@ =H'(f) =i2nfL.
X()
Hence, the PSD for the inductor voltage is
f If o)

S = |H'(f)I%S =R Rt
y(f) FISx(f) TR
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and the autocorrelation is
Ry(@) = LSy(f)e”"f df = 2KTR8(G) - S-exp(—5-171]]

which is easily verified by Fourier transforming. From (10.29), we have the cross-
spectrum

Fifo
S =S H'(f) = Syy (—=f) = i 2KTL———
() =Sx(FH(f)=Sxy(=f) =1 T+ IR
and the cross-correlation

KTR
L

(which is easily verified by Fourier transforming) for the inductor current and voltage.

Ryx (T) = Ryy (=1) =

R R
[GXP{ZT}H (-1) - exp{——L—T}u(T)]

10.24 Since S(¢) and N (¢) are orthogonal, then
MSE =E{[St) - SO} =E{[St) - h(1)® S¢) — h()® N ()]}
=E([S®) - h@®)® S} + E{[h()® N()*}
= E{8%(t)} - 2E{[h()® SOIS(")} + E{[h(1)® S®)]*} +E{[h()® NI’}

= Ry (0)=2 [ h()Rs (w)du + [[ hu)h 0 )Rs v = )dudy +Noff h@)h )8 —u)dudv
= [Ss(hdf = JHESs(hdf = [H (Ss(F)df + [ 1 (F )down 1085 ()
+No | 1H()1df

= [-H )PS5 (F)df +No [ 1HE)Pdf

where the next-to-the-last line is obtained by using Parseval’s relation and the fact that
H*(f)=H(~f) and Sg(—f ) = Sg(f ). By expressing |H (f)| as

HE) = |—L |

H(f | =l—7rl,

Y | 1+i(f/f D)
which corresponds to (10.101) for n = 1 with by=ag=1, b; =0, and a; = 1/2xnf ,,
and then expressing |1 — H (f )!1Sg(f )| as
NS ()l = | —T Do

| 1 +l(f/f1) I l 1 +l(f/f0)

Ch. 10: Spectral Density



10.25

The Random Processes Tutor e 155

| o
| iNSo (F/f 1)

T i+ fIf Q) — Ffof o
which corresponds to (10.101) for n =2 with by=b, =0, b; =+S¢/2rf, ag=1,
ay = (1/f y+1/f o)/ 2w, and a, = 1/4n?*f o f |, we can use (10.102b) to obtain

1 So/@nf 1) L1 No  mSof§
2 (12nf o+ 12nf ) /ATPfof ;2 120f 1 fo+ [y

| »

+ N of 1

Minimizing this MSE with respect to f; yields the desired result:

d
daf 4

which is an admissible solution for So/Nj > 1.

——MSE =0 — f1=fo[NSo/No- 1],

The estimate $ (t) can be expressed as
$) = [Y1(0)+cY )@ h(t)

as (t)

=[SE)+c—=1® h(t) + [N1(t)+cN()1® h(2).

Fourier transforming S (t) yields

S = SF)+i2nfcS (FHF) + IN((f )+ eNo(FHIH (),
where

H({)= m
Thus,
SEY=8() + IN(F)+cN(F H(f)  for ¢ =1/2nf .
Hence, the estimate S (¢) is given by
S(t)=8(t) + [N{(t)+cN,@)I® h(t),

which is the undistorted and undelayed signal plus filtered noise. The resultant filtered
noise N (¢) has mean squared value given by

E(N*0)) = [IH()PINg +cNgldf
N

j 1+(f/f )2 anf |

using (10.102a). By equating to zero the derivative of E {1\7 2(t)} with respect to f {, we
find that the average power E {N 2(t)} of the filtered noise is minimized by choosing

1 2
No +(—27f1—) Npldf =nf Ny +
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the cutoff frequency f; to satisfy

1 N
= —AINp,/Nq;.
f1 215\/ 02/No1

10.26 a) The MSE is given by
MSE = E ([Y (1)~ Z(®)I*),

where

Z@) A rc22) ng’)

Since Y (t) and X (¢) is related by
FE)+ o f Y u)du = X (1)
or, equivalently,

Y@, 1. dxX@)
a TrReTO="4

then

MSE = E{[Y(t) - Z()]*} = RC’E {[%]2}

= RCY? [ G2nf Y5y (Fdf = J(fil)2 H () PSy (df ,

where H (f ) is the transfer function from X (¢) to Y (z),

_iIfD _ 1
HO=TGry 17" e
Thus, the MSE is given by
fI1f
MSE = | ———=Sx(f)df.
j AT

But for the Sy (f) given in the exercise, this MSE is infinite because dX (¢)/dt does
not have finite average power. In order to obtain a finite MSE, the spectrum of X (¢)
must decay asymptotically at least as fast as 1/f%.

b) We could proceed by analogy with part a, but the following is an alternative
approach. The MSE can be expressed as

MSE = E{[Y(t)-Z(t)1*} = E{YX(t)} - 2E{Y(t)Z(¢)} + E {Z%()},

where Y (t) and Z(¢) can be expressed as the response of systems 4 (¢) and w (¢) to
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the input signal X (¢), respectively,
Y@)=h(@)® X(t) and Z@)=w(@)®X(@),
in which, according to the circuit diagram,
1 1
Hf)=———+——— and W(f)=- .
T+ i D=5

Thus, the MSE can be alternatively written as

MSE = I[IH(f)I2 —2H( W (f) + WAk (f )df

oo

1 1
I L+ (FIf
Substituting Sy (f) into this equation yields

7 Sx (f )df .
1

MSE = S, . 1 : (Fifo '
S (FIF)TL+ (FIFDT 1+ (fif o)
I (f1/f o

df.
O 11+ (FIf DAL + (F1f o]

Fourier transforming this differential equation yields
G2rf Y'Y (F) + @y G 2nf 'Y (F) + -+ agY ()
= b, (2nf YK () + -+ boX ()
The transfer function from X (¢) to Y (¢) is therefore given by

Y(f) _ by (2mf )Y+ 4 by
X)) GmfY +a, G2nf )t o+ ag

H(f)= , *)

and when Sy (f ) = N we have
Sy(f) =NolH (f)I2.

The numerator and denominator of H(f) can each be factored into a product of
factors of the form (i2mf —z), where the root z is either real or complex. For real
roots, the numerator and denominator of |H (f |2 have factors of the form
(2nf )? + z*. For every complex oot z, there is another factor with root z*. In this
case, the numerator and denominator of |H (f )I2 have factors of the form
[Qrf Y+ 1z 2] - (4nfz; )%, where z; is the imaginary part of z. Thus, in both cases,
the numerator and denominator of |H(f)I> contain powers of only f 2, Hence
|H (f Ydown 1012 is a rational function of f2.
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b) The discrete-time counterpart of this differential equation is the following difference
equation:

agY(@i)+aY(@-)+ - -+a, Y@i-n+1)+Y({@-n)
=boX(U@)+ -+ b, X({—-n+1).
Fourier series transforming this equation yields
aogY(f) + a1 e ™V (f)+  +a, e 2 DY (f) 4+ e 20nf ()
=boX(f)+ -+ b, e 2 DE(f),
and the transfer function is, therefore, given by
Py bo+be 2 4. g p i D

X(f) ag+ae®™ 4. 4q, g2 (D) 4 pi2nfn’

Hif )=

Again, when Sy (f ) = N, we have
Sy(f) = IH(f)I?N,,

which is the same as (*) with i 2nf replaced by ¢'%¥ .

10.28 Since the nth difference of X (¢) can be expressed as
Y,@¢)=Y, (¢)=Y,_(¢t-T)
Yn—l(t) = Yn-Z(t) - Yn—Z(t -T)

Y,t)=Y@¢)-Y¢-T)

Y(@)=X@)-X@¢-T),
where the transfer function for each of these difference equations is given by

H()=1- e 20T,
then in the frequency domain we have
Y, () = HEW, () =HX (W o(f) = - - - = H* (X ().
Therefore, the spectral density of the nth difference is given by
Sy,(F) = IH(F )" Sy (f),

where

H(f)2 = 11— e 2T 28 = 2%[1 — cos2nfT)]".
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10.29 a) Since the squared magnitude of the transfer function corresponding to the Hilbert
transform is unity,

]H(f)lzz{(—i*)(—i)* =1, f>0 } _,
e s, f<0
then the PSD is unaffected by the Hilbert transform:
Sy(f) = IH(F)PSx (f) = Sx (F).
b) We have, from (10.29), the cross-spectrum
Sxr(F)=H" (F)Sx ()
but for the Hilbert transform, H * (f) = -H(f); therefore,
Sxy(f) =—-H({)Sx (),

which implies that the cross-correlation Ryy(t) is the negative of the Hilbert
transform of Ry (7):

’

Ryy (1) = Rx (1) ® h (),

where £ (1) = 1/nT.

10.30 Fourier transforming the differential equation given in the hint yields
mG2nf YW () + bE2nf YW () + kW (f) + m(i2nf )V (f) = 0.
From this, we obtain the transfer function relating V (¢) and W (¢),
W) _ —i 2nfm
V() i2nfb +k —m@nf)?

Hence, the average response power P becomes

H()=

P = bE {W20)} = b [ Sy (F)df = b [ IH@)PSy(F)af

|2

oo i .
=b_[ | i2nfm 4 zdf-
S li2nfb +k —m@nf)*| 4+ Q2nf)
Using (10.102) for n = 3 to evaluate P yields (using b; =2m, ag=2k,a,=2b +k,
a,=2m +b,and a3 =m)

2m?

P=—"""
4m +2b + k
Now, substituting b%4m = k into P yields
_ 2m?
4m + ANmk +k’
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This average power P can be made largest by using the smallest practically feasible
spring constant k.

10.31 a) Since the noisy resistor can be represented by a thermal noise source N (¢) in series
with a noise-free resistor, then the transfer function relating N (¢) and Y (¢) is given
by

H) = Y(f) _ 1/i2nfC _ 1
N() li2nfC +i2nfL +R 1+ i2nfRC — 2nf )’LC
Therefore, the spectral density for Y (¢) when N(¢) is white noise with spectral
density Ny = 1 is given by

1
[1-nrf)2LCT? + @ufRC)*’

Sy(f)=H)=

which is the desired result.

b) A table of integrals can be used to inverse Fourier transform this PSD; the result is
(10.146a).

¢) When the losses in the circuit are small, i.e., R < 2WL/C , then we have

rof = 2L 1 _ 1 2LiC
1" R oniIC  2n R

Therefore, € in (10.146b) satisfies

> 1.

exl for fo = fl
and, as a result, (10.146a) reduces to

Ry (1) = kexp{—|t/Tg|}cos(2nf {T).

10.32 a) From the characterization (10.108) for shot noise, we obtain (using (10.109))
E{(Y®)y=my =E{[Z(—w)g@)du} = my [ g@)du = myAG (0)
and

E{Y(¢+DY (1)} = Ry(@ = E{[[ g)g 0)Z(t +1~u)Z(t —v)dudv }
= [[e@)g IRz (x+v —w)dudv = R, ® r, (@)

= [ma M? + Mmi +06)8(D] @ r, (1)
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= Img M2 [ ry u)du + Mm2+631r, @)

= [myAG ()1 + Alm +031r, (D).

b) For unity pulse amplitudes A; in the shot noise process, we have m, =1 and
GZ = 0. Therefore, part a reveals that

my =myAG (©0) = A [ g (t)dt
and

6% = Ry(0) - mf = [AG ()2 + Ar, (0) - [AG O = A [ g%(t)dr.

10.33 a) From (10.122)-(10.125) we obtain the following mean and autocorrelation for the
time-sampled white-noise process:

my =E{Y()} = [ myg(T —t)dt =0
since my =0, and

Ry(k) = E{Y (i +Kk)Y (i)} = [[ g (T +KT —u)g (T —v)Ry (u —v)dudv

= No [ ¢ (T+KT—u)g (iT—u )du

—o0

=N0J.g2(u)du5k, for 1, <T

=Ngd;  (using (10.125)).

b) From (10.124) and (10.128), we obtain the following autocorrelation for the time-
sampled nonwhite-noise process:

Ry() = [Ry(@) [ g*T +v—1)gw)dv dv= [Ry(Wry(x~kT)d7

—o0

=8 [Ry@W@® g@ldt for T5<T -1,
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=8 J-Sx(f )IG (f)I?df  (using Parseval’s relation)

—co

=Ny,  (using (10.129)).

10.34 a) The autocorrelation for the white noise process X (#) with time-variant attenuation
a(t) is given by
Ry(t+1T,t)=E{X@+0)X({)) =a(+1)a(@)E{Z(t +DZ(t)}
=Nga(t +1)a(t)d(t) = a*(t)d(1),
which depends on time ¢. Therefore, X (¢) is nonstationary.
b) The time-averaged probabilistic autocorrelation for X (¢) is given by (using the result

of part a)
T2
Ry>(®) = lim %_TI/ZRX (t +1, t)dt
T2
= lim = [ a%2)dtd() = <a1)>5()
Toe T 7

and the corresponding time-averaged spectral density is given by

<Sy>(f) = [ <Ry>Me 241 = <a(t)>.

10.35 a) From Section 10.8, the one-sided bandwidths for the process X (¢) with triangular

spectrum is given by

Sy (f)d
5 _Li"(f f_lBSx(O)_E
72 500 2 S0 2’
M o 1172
285 (f )d
L Lf x (F )df [asopin]” g
N 2] SyOB T 206’
[ sx(rrar
and
B3=2—f‘=B

Ch. 10: Spectral Density



The Random Processes Tutor ¢ 163

Since the time-averaged PSD for Y () = X (¢ )cos(2nf ot ) is given by
1 1
<Sy>(f) =S5 ~fo + 5% +fo)

then the one-sided bandwidths for Y (¢) are as follows:

<Sy>(F)df L
g Y 4SX(O)B

Bl= = =B,
[ oo 712 B 12
[ -rorsystiar | |5 [£28ear
By= |0 S SR
[ <Sy>()af %8
L 0 -
L B
|
1 ol
| 7508 V6
and
B3=ZB

b) The mean-squared incremental fluctuation of X (¢) is given by
E{IX(t+1)-X(O)} = E{IX()® h()2) = Ryey 0) = [ Sy (FIH()Idf ,

where
h(t) =8(t +7) — 0(¢)
and, therefore,
H(fy=e*™7-1,
It follows that
IH (£ )12 = [cosnf T)— 112 + [sin(nf 1)]? = 2[1 —cos(2nf 1)] = 4[sin(nf 1)]%

Since Sy (f) = 0 for |f | > B4/2, then the preceding yields the equation (10.149). It
follows from this equation and the inequality Isin¢| < || that
B3/2 B3/2

E{Xt+1)-X®)*} <4 j Sy (f)mf1)%df <4 j Sy (f Y(®[B 5/ 21%)%df
-B3/2 -B3/2
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= [ sy (F)df @B v = E (X%0)) B 50

The desired result (10.148), which relates the normalized mean-squared incremental
fluctuation to the bandwidth, follows immediately.

10.36 White noise is an ergodic process that has a flat spectrum and therefore has no spectral
line at f = 0. It follows from Section 10.9 that it must have zero mean value.

10.37 a) Using Isserlis’ formula, we obtain the following autocorrelation for the lag product
Z@)=X(@E)X¢ -1

Ry(u)=E{Z(t+u)Z(@t)} =E{X(t+u)X(t +u-1X®)X(-1)}
= RA(T) + RAu) + Ry (u + TRy (u = 7).

The spectrum of Z(¢) is obtained by Fourier transforming:

S;(f)= JRZ(u Ye H2mfu gy

= RZ(3(f) + _[sz(u Je 12 dy + fRX (u + TRy (u —T)e 2 dy

= RADS(F) + [ Sy Sy (v=F)dv + [ SyW)e ™Sy (v—f)ei 2y

(using the convolution theorem and the time-shift property of the Fourier transform).
Introducing a change of variables yields the desired result (10.150):

S2(F) = RAWS(F)+ | Sy v+f12)Sy (v=F12)dv+ [ Sy (v+f12)Sx (V= F 12)e *™dv

= RADS(F) + | Sx(v+]12)Sx(v—F /D)1 +cos(mvnldv

(since Sy (V+f/2)Sx (v—f/2) is even and sin(4mvr) is odd).
b) For t =0, (10.150) becomes

S7(F) =2 [ Sx(vV+£ /2S5 (v—F 12)dV + 8( JRE(O)

= 253 ()@ Sx () + 8(F )L [ Sy vd v
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It follows that the width of S, is twice that of Sy. That is, squaring the signal
doubles its bandwidth.

From the decomposition (10.133) and the property (10.134) we obtain the mean
my =E{X(1)} =E{X, ()} + E{X;()} = 3 E{4, }e' ™!
n

and autocorrelation
Ry(t+7,1) = E{(X(@+DX ()} = E{X (¢ + DX ()} + E Xzt + DXy (1))
=Ry (1) + XY E{A,A, }eiZn(oc,,+a,,,)tei2mn1.

nm

If condition (10.137a) is violated, my depends on ¢ and, therefore, X (¢) is not WSS.
Also, assuming that condition (10.137b) is satisfied, we see (using ¢._, = o, and
A, =AZL,) that

Ry(t +7, 1) = Ry (¥) + 3 E {14, }e' ™", *)

but if E{A,A, } # 0 for some m # -n, then Ry (¢ +7, t) depends on ¢ and X (¢) is
not WSS.

Let A, = |A, lexp{i®, }; then (using the independence of |4, | and ©,))
E{A2) = E{IA,”}E {expli®,]}.

If the phase ©,, is uniformly distributed on [, &), then
1 T
; = — | 0i040 =
E{exp[i®,]} = o __[Ie’ do =0,

and the condition (10.137b) is satisfied.
It follow from (*) and (10.134) that the autocorrelation for the component X, (¢) is
given by

RX,,(T) = Z E { ]An Iz}ei2na,,'t.
n

Fourier transforming this autocorrelation yields the desired result (10.136) for the
PSD.



Chapter 11

Special Topics and Applications

11.1 a) The left member of (11.11) can, by interchanging the order of summation and
integration and applying the sampling property of the Dirac delta, be expressed as

]

Since the right member of (11.11) is periodic with period 1/T', it can be expressed in
a Fourier series,

v S(t—nT)e 24t = ¥ J'S(T_nT)e—-ﬂnf’ch: Y ei2nfnT

n n=-—00 —oo n==—co

% Y f -m/T)= 3, c e’ 2T,

m=—oo n=-—o0

where the Fourier coefficients are given by
12T

T [ L 3 8¢ -mimye i af = j8(f)e-'2""7”fdf 1.

-1/2T T m=—co

This verifies that the left and right members of the identity (11.11) are indeed equal.

b) Applying Parseval’s relation to (11.10) and using (11.11) yields

S,(Tf) = j[jR O A [j T 8(c—nT)e 2™dldy

—oo0 —c0 N=—00

= [sevpr B sv-mDav=1 § 56+

1l sgg_m
7 ; Sy (f T)’

which is the desired relation (11.12) between the PSDs of a process and its time-
sampled version.

11.2 Fourier transforming (11.21) yields

Y(f)= JY(t)e“"Z“ftdt = I i X (T)p (¢ = jT)e " 2" dt

—co —o0 j==—00

=P(f) Z X(]T)e—zanfT P(f)[J.X(’C) Y 81— J'T)e—IZth'td,c]

Jj=m—oo Jj=—oo
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By analogy with (11.10) and (11.12), we have
- 1 o k
Y(f)=—=P X —=),
(=3P T K¢ =)

which is the desired result (11.22) required to prove the validity of the sampling theorem
(11.18)-(11.20).

11.3 a) To prove the sampling theorem for mean-square bandlimited WSS processes, we
proceed as follows. Using definition (11.263) for X@) yields
sin[(nt/ T )(¢t —nT)]
(m/T)¢t—-nT)
sin[(n/T)(t —rT)]
®/T)¢t —nT)

S E (X (uT)X (mT))

n=—oo

3 Ry(In —mIT)

n=-—oo

E{X ()X (mT)}

’

and using (11.267) with b = 0 results in

sin[(rt/ T )t —nT)]

E{XOX(mT)} =Ryt -mT)= T Rylln-mIT)= o

n=-—o0

Therefore, we have
E{IX(t)-X @)X (mT)} = E{X(t)X(mT)} — E{X ()X (mT)} =0
for all m, which implies that
_$ A B 9 sin[(1t/T)(t —mT)]
E{[X®)-XNX@®)} = Y E{[X@)-X(@)IX(mT)} /Ty —mT)

m=—oo

Also, using (11.263) and (11.267) witha =1 =1¢ and b = 0 yields

sin[(m/ T )(t —nT)]
/Tt —nT)

=0.

EXMX @) = i E{X(nT)X ()}
sin[(n/T)(¢ —nT)] _

- n_z_wRX(nT —1) T Ry (0).

Thus, we also have shown that
E{IX(")-XO)X (1)} = E{X*()} —E (X ()X ()} = Rx (0) — Ry (0) = 0.
Hence, for a mean-square bandlimited WSS random process, we have shown that
E{X®)-XOP) = E{XO)-XOX ) - E{XO)-X KX (©))
=0-0=0,
where X (¢) is the interpolated time-samples of X (¢).
b) The MSE in (11.262) can be expressed as
MSE = E{IX(®)~X (1))
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=E{X@®)X(@®)} - E{X@)X(t)} —E{X)X ()} + E{X)X 1))

= Ry (0) = Ry (0) — Ryy (0) + Ry (0)
= [ISx(F) = Sy (F) = Sgy (F) + Sz (FNdf

For H (f ) given by (11.270c), we obtain

o= frgsa - e

Using Z (¢) defined in (11.270b), we obtain

.= sin[(n/ T)(t —nT - ©)]
X=X X0T+O)= e T —e)

= i X(nT +©)3(t —nT —-®)® h(t) = [X()Z(1)]® h(2),

n=-—oo

which is (11.270a). It then follows that

Ry =E{X@+DX(®)} =E{X(t+DZ(t +DX()Z()}® r;, (%) (using (9.45))

= [Rz(DRx (D] ® 1, (T)

and

Ryy (=1) = Ry (1) = E{X (t +DX (1)}

—oo

= [EX@+0X @ -)Z(¢ -u)}h@)du = [ myRy(v+udh u)du

=myRx(T)® h(T), (since h(T) is even),

where, from (11.270b),

T12
1

=] 3 8c-nr-0)6- jzs(z ~6)d0 =,

-T2 n=—o0

my = E{Z(1)} =

and

T2
R,(V)=E{Z(+1)Z()} _—;— f Z 8(t +t—nT —0)0(t —mT —0)d 6
T nm=—oco

L nT+TR2
e > '[ 8t +1-0)0(t —mT +nT —o)do (using 6 = nT + 0)
Tn,m=—°° nT-T/2
| = nT+T/2
=7 X Y | s¢+t-o)¢-IT-0)do (usingl=m —n)
I=—0 n=—co nT=T12
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C LS [seteoit—IT—o)do=L 3 s~
=5 X [ 8¢t +1-0)8(t ~IT —0)do = X 8a-I).

|=—00 —c0 l=—c0

Therefore, we have

S;(f) = | Ry @Rz ® ry(w)e 271

= [ Ry@e 12 T][% S 8(t—IT)ld7 IH(f)> (using the convolution theorem)

e I=—c0

= ISX vV+f )% i e 12WVIT gy |H (f)I*  (using Parseval’s relation)

|=—c0

= J‘Sx(v+f)% 3, 8v—)dVIH (f)P?  (using the solution to exc. 11.1)
—00 l=—°°

=% 3 Sx(f +DHEP=8¢¢),  If 1< 12T
I=—o0

and

SXX(_f) = Sx;f(f) = J’mZ[RX(‘c)® h(r)]e‘”“fde

= —;—SX(f)H(f) =S¢(f), Ifl<1nT.

Hence, substituting the preceding two results into (11.268) yields

MSE = [[Sx(f) = Sx(F) = Sy () + Sy (F)1df =0,

which is the desired result: an alternative proof of the sampling theorem for mean-
square bandlimited WSS processes.

¢) Using an approach similar to that in part b, the interpolated nonuniformly spaced
samples X (¢) in (11.274) can be expressed as
X0)=XOZOI® h(),
where
Z(t)= Y 6(t-T,), t=0
n=1
is the sampling process and

_ sin(2nBt)
h(t) = (2B +\)t



170 ¢ Gardner & Chen

is the interpolation pulse, which has Fourier transform

1/(2B +1), If1<B
0, If | > B.

H(f)=
From (6.43)-(6.44), we obtain
my =X, and Rz(1)=A8(1) + A%
Therefore,
Ry () = [Rz (DR (D] ® 1, (T)
= [(AB(7) +A*)Ry (1)1 ® r,,(T)  (cf. solution to exc. 6.16)
Ryy (1) = Ry (T) = mzRy (D@ h(T) = ARy (T)® K (T).

Thus, the MSE is given by

MSE = J[Sx(f) = Sy (F) = Sy (F ) + Sg(F)1df

[ 1Sx(F) = NH(F)Sx (F) = NH™ (F)Sx () + IH (F )PTARy (0) + A28y (F D1 }df

[ sy (=M (F)12df + ARy ) [ 1H(f)1Pdf

Ry 0).

2
2B 2\B 1
2B +K] Ry @) + (2B +;\,)2RX(O)_ 1+A/2B

Hence, the MSE decreases as the ratio of the mean sampling rate A to the bandwidth
B increases.

11.4 a) The autocorrelation of the pulse-position-modulated signal X (¢) in (11.276) is given
by

Ryt +1,)=E{ 3 p(t+t-T=T))p(t-iT -T})}
jrimo

oo

= 2 E{pG+t-T-THIE{p(—iT -T;)}

j’[z—oo

J#i

+
J

M

E{p(t+1—jT -T))p(t —jT -T,)}.

i

Since this autocorrelation Ry (¢ +7, t) is periodic in ¢ with period T, then its average
value is given by
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Z/2

Ry>(0) & lim — L[ Ryt +1, )t =
Zow Z 7,

1
— | Ry (t +1, 1)dt
T J Rx( )

Ot—

E{p(t+1—-jT-T)IE{p(t —iT —-T;)}dt

M3
~|[=
O'—.’“I

-~
# 1l
1

Ot—

% E{P(t+1—jT =T;)p(t — T ~T))}dt

+
e

T oo oo
[[[p+r-iT—wya@dau ]l [ p¢ =iT —v)d)dv] de
0 —ce

—0c0

'M8
o e

—~ o~
# 1

Mz

1
=T

j 00

+

[=h |

fp(t +T—jT —u)p(t —jT —u)d (u)du dt

n
|

Joi=—eo

[Ip(t +T—JT—-u)d(u)du][J.p(t—iT—v)d(v)dv] dt

N[=
Ot

[[p+1-iT -w)d@)dull [ p ¢ T =v)dw)dv] ar

O'—."‘]

- 1

AT

* %L[P(S +T—u)p(s —u)d(u)duds  (using s =¢ — jT)
_%_i “IP(S” ”)d(u)du][Jp(s—lT v)d(v)dv] ds

%I[J-p(s +1T- u)d(u)du][‘[p(s ~v)d(v)dv ] ds

%J.p(s +T)p (s)ds Jd(u)du (using/ =i —jands =t —jT)

*~1|-

.[o w(s+tw(s —IT)ds — %_J;w s+Tw(s)ds + %rp )

—co

i u (G+IT) = L1, () + 27, (@),

~1|~
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where

wi@)=p@)® d().

Fourier transforming <Ry >(T) yields the time-averaged spectrum

<Sy>(f) = [ <Ry>@e 12 4n

= % 3 W ()2 2T — %[W(f)lz + %lP(f)IZ

|=—c0
_(PEDE) 2 & _n, .1 D’ 2
= | - " X 8¢ T)+T1P(f)l[1 ID (f)I°],

n=-—oo

which is the desired result (11.277).
b) Since p(¢) = e T for t >0 and d(°) is a uniform probability density on [0, a], then

T sin(rfa) _inta
Pf)=— d D(f)=—""—+ .
D=+t ™ U= ey *
Therefore, the time-averaged PSD (11.277) becomes
T sin(rtfa) \2
<Sy>(f) = 1-
)= A (1= nfa )]

1 sin(nfa) 12 & sF — L
i (27th)2+1[ fa ]ni“ -

11.5 a) Inverse Fourier transforming the definition (11.40) yields the relation (11.53),

T()= [¥( +f e df

= [¥0e™ave ™ < w(ne Y (v =f + fo,

between the complex envelope and analytic signal.
b) Substituting the definition (11.41) into the relation (11.58) yields the relation (11.59),

X(t) =Re{[U@) + iV (t)]e' )
= Re{U (t)cos@2nf o) — V (£)sin(nf ot ) + i [U (¢)sin@nf ot ) + V (¢ )cos2rf ot )]}
= U (t)cos2nf ot ) — V (t)sin(2nf ot ),

between the real signal X (¢) and its in-phase and quadrature components.
¢) From (11.50), we have
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-, f >0
Hf)=1 i f<o.
Therefore, since é(f+f0)=0forf > 0 and C'(f—fo)=0forf < 0, then

_[H{C(t)cos(2nf0t)}e_i2"f’dt = H(f)%[@(f+fo) +C(f -f o)

= 5 C¢=f0-CE+fol.

from which we obtain the Hilbert transform pair

oo

H (C (t)cos2rf o)} = j% [C(F—Fo) = CU+Fle’®™df = C(t)sin2nf o).

Similarly, we have

jH {S(¢)sin@@nf ot )}e 2V dt = H(f)%[—g(f +fo) +S(F —Fo)l

- ——;—[S(f +f)+ 8¢ =fol

which results in the Hilbert transform pair

oo

H{S()sin@nf )} = [ —%[S(f +f o)+ 8(f —f '™ df =-S(t)cos@nf o).

Hence, from (11.57) we obtain
U(t) =Z(t)cos2nrf ot ) + H {Z(t)}sin2nf ot )
= C(t)cos’(2nf ot ) — S (¢)sin(2mf ot )cos2nf o )
+ C (2)sin®(2nf o) + S (¢ )cos(2nf ot )sin(2mf o) = C (¢)
and
V(t) = H{Z(t)}cos(2rf ot) — Z (¢)sin2nf ot )
= C (¢)sin2nf ot )cos2nf ot ) + S (¢ Yeos?(2nf of)
— C(t)cos(2mf ot )sin2mf ot ) + S (¢ )sin2nf o) = S (t),

which reveals that C(¢) and S(¢) in (11.62) are the in-phase and quadrature
components (assuming C (¢) and S (¢) are bandlimited to (=f ¢, f o))-
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11.6 a) Since
Y@)=h@)® X)),
then Y (¢) and X (¢) are jointly WSS and
E{X()}=mx =0, E{Y (@)} =my =0,
E{X(t+1X(1)} =Ry (D),
E{Y¢+TY ()} =Ry (D)® r,(T) =Ry (t) (since ry, (1) = 3(7)),
E{Y@®+DX (@)} =Ryx(®) =Rx (1) ® h (1),
E {X(t +DY (1)} = Ryy (1) = Ryy (1) = Ryx (1).
Therefore, it follows from (11.57) that
E{U @)} = my = mycos(2nf gt ) + mysin(2nf o) = 0,
E{U+DU®)} =Ry (@)
= Ry (T)cos(2nf ot +T])cos(2nf ot ) + Ryy (T)cos(2rf o[t +T])sin(2mf ot )
+ Ryy (0)sin(21f o[t +TDcos2nf ot ) + Ry (T)sin(2nf ot +1])sin(21f of )
= Ry (T)cos(2nf ¢T) + Ryy (T)sin(2nf yT) (using trigonometry identities),
E{V(t)} = my = mycos(2rf ot ) — mysin(2nf o) = 0,
E(V@+0V(D)} =Ry (™)
= Ry (T)cos(2Tf o[t +1])cos(2nf gt ) — Ryy (T)cos(2nf ot +T])sin(21f ot )
— Ryy (0)sin(2rf o[t +T)cos(2nf o ) + Ry (T)sin(21f o[ +T)sin(27f ot )
= Ry (T)cos(2mf ¢T) + Ryy (T)sin(2mf yT) (using trigonometry identities),
and
E{U@+TV (@)} =Ryy (@ =E{V(OU (¢ -1} =Ryy (-7)
= Ryy (T)cos(2mf o[t +T])cos2nf gt ) — Ry (T)cos(2nf o[t +T])sin(2mf ot )
+ Ry (D)sin@2nf o[t +T])cos@nrf gt ) — Ryx (V)Sin(2xf o[t +T])sin(2nf of )
= Ry (1)sin(21f oT) — Ryx (T)cos(2mf yT) (using trigonometry identities).

Thus, the in-phase and quadrature components, U(¢) and V (¢), of X (¢) are jointly
WSS if X (¢) is WSS.

b) The autocorrelation of Z(¢) in (11.62) is given by
Ry(t+7,t)=E{Z(t+T1)Z(t)}
= R (T)cos2nf ot +T])cos(2nrf ot ) — Reg (T)cos(2nf o[t +T])sin(2rf ot )
— Ry (T)sin(2nf o[t +T])cos(2mf ot ) + Rg (T)Sin27f o[t +T)sin(2rf o )

Ch. 11: Special Topics and Applications
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1 1
= E[RC (T)+Rg (T)]cos(2mf ¢T) + E[RC (1) —Rg (T)Icos2mf o[2f +11)

~ %[RSC (T) _RCS (T)]Sin(ZTCf OT) = %[RCS (T) +RSC (T)]Sin(ZTl:f 0[2[ + T]).

Therefore, Z (¢) is WSS if and only if
Reg(t) = —Rgc (1) and R (T) = Rg (1),

in which case the resultant autocorrelation is given by (11.63).

Since
Res (1) =Ry (1) = —=Reg(T)  and  Rge (—7T) = Reg (T) = =Ry (T,
then
Ses(F)==Scs(f) and  Ssc(f) = ~Ssc(F)s

which implies that these cross spectra are purely imaginary. Therefore, S;(f) in
(11.64) is real, as it must be.

As an alternative to the approach to verifying (11.279), for the PSDs of the in-phase
and quadrature components, which is outlined in the exercise statement (and which
exploits the fact that both equations in (11.57) are of the same form as that in
(11.62)), we use the results of part a. From part a, we have

Sy(f)=Sy(f) = J' [Ry (1)cos(2f oT) + Ry (T)sin(2rf g)le 2% 'd1

= iS¢ £+ +£ 01+ 2B ~F 0 =S (F +F o

Since from (11.61) we have
=iSx(f —=fo» [ >fo
S =FO =" ise(f ~fo  f <fo
==iSy(f =fou(f =fo) +iSx(f —foul=f +fo)

and
_iSX(.f +f0)’ f > —fO
S HI0 = ise(f +f0n £ <o
= —iSX(f +f0)u(f +f0) + lSX(f +f0)u(—'f ‘“fo)a

then the preceding formulas for Sy (f) and Sy (f) reduce to (11.279). It is a simple
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matter to show that (11.279) yields (11.65) under condition (11.66).

11.7 a) See the solution to exercise 11.6a for the formula for Ry, (7).

b) Fourier transforming the result for Ry, (T) obtained in exercise 11.6a yields

Syy () ==Syy () = ,[ [Ry (T)sin(2rf oT) —Ryx (T)cos(2nf gT)]le ™2V %dt

= Sy ~FO=Sx(f + 01 = 3L (f ~F O+ S f +f oL
But
_iSX(f)’ f >0
Syx(F)=H({)Sx(f) = iSX(f), f <0
and

Sx(f +f)=0 for f>fy and Sx(f-fg =0 for f <—fy.
Thus, the cross-spectrum for the in-phase and quadrature components is given by

iSx(f +fo) = Sx(F —fo)l.  IfI<fo
Sov(F)==Svu(f) =1 o, IF 1> fo

11.8 a) Using trigonometry identities to expand the polar form (11.70) yields the rectangular
form

X () =A(t)cos[D(t)]cos(2nf ot ) — A (¢ )sin[D@(¢)]sin(2nf ot ),
which reduces to
X(t) = U(t)cos@2nf ot) — V (¢ )sin(2wf ot )
since, from (11.71)-(11.72),

sin[®(¢)] = %—E—% and cos[®@(t)] = %—g;—

b) Using formula (11.73) for an FM signal X (¢), we obtain the autocorrelation
Ry(@+1/2,t=12)=E{X({+12)X (t —1/2)}
= a’E {cos[2nf ot +T/2)+®(t +1/2)]cos[2nrf o(t —T/2) +D(t —T/2)]}

2
= %E {cos[4rf o +D(t +7/2) + D(t —T/2)] +cos[2nf gT+ DP(r +1/2) — D(¢ —1/2)]}

2
= %E {cos(4mf ot Ycos[@(t +T/2) + (¢ —T/2)] —sin(4xf ot )sin[D(r +T/2) +D(¢ —1/2)]
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+ cos(2nf yT)cos[D(¢ +7T/2) — (¢ —1/2)] —sin(2nf (T)sin[D(: +7T/2) — D(t —T/2)]}
= %2[a (t, T)COSQRF §T)—b (1, T)SINRRSf oT)+c (¢, T)cos@Enf of)
—d(t, T)sin(4znf ot )],

where a (¢, 1), b(¢, T), c(t, T), and d (¢, T) are defined by (11.77).

¢) Substituting (11.78) into (11.76) and time-averaging the result yields the following
time-averaged autocorrelation for an FM signal:

T2
Ry>(®) = lim = [ Ry(t +12, t —v/2)de
T->=T 75

2
= %[a (T)cos(2nf 4T) — b (D)sin(2nf ¢T)]
2
o %——[c (T)<COS(4TS o )>—d (T)<sin(4nf ot )>]

2
= %[a (T)cos(2nf oT) — b (T)sin2rf gT)].

11.9 To evaluate formula (11.80) for a zero-mean Gaussian process ®(¢), we use (2.38) with
o=[1, -117 and X = [®@¢ +1/2), ®(—1/2)]". Then from (2.38),

R5(0) Rg(T)

my=E{X}=0 and Kyx=E{XX'}=
Rg(T1) R&(0)

o

Therefore,

Ro(®) Rom || 1

a(@) = expl-—- 0T Kyo) =exp{-—[1 1] }
2 2 Ro(®) R0 || -1

= exp { —[R (D(O) - R (I)(T)] } ®

11.10 Since from (11.77) and (11.78) we have
a,00=a0)=1 and b, 0 =b0)=0,
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11.11

11.12

then from (11.79) the time-averaged power of the FM signal is given by

a’

2
<Ry>(0) = %[a (0)cos(0)~ b (O)sin(0)] = -,

regardless of the modulating signal ®(¢).

From (11.75) and (7.23), we obtain the following formulas for the derivatives of the
autocorrelation for the phase:

RS (0) = Ry(0) = - [ Sy(f)df

and

RO =RY©) = [ @rf s y(f)df.

Now, using the definitions of Af, By, and B in (11.86)-(11.88) yields alternative
expressions

R (0) = -@my2Af?

and

T 4
R ©) = @nPBS [ Su(f)df = @nyBIAF? = (275)4%_

Substituting these expressions into (11.98) and rearranging the equation yields

1@ 1 @
R (0) — R (1) =_3R§,)(0)12 - 2—4R§,’(0)r4 ok

N ) 2_ ot afnt
= ot - G A

for the first few terms of the infinite series expansion of R (7T).

Since @(t) is a zero-mean stationary Gaussian process, which means that the
probability densities of linear combinations such as ® = ®(¢ +1/2) £ ®(¢t —1/2) are even
functions, and since sin[®(¢ +1/2) £ ®(t —1/2)] is an odd function of ©, then b(7) and
d(t) in (11.77) are zero. Also, using the result in exercise 11.9 with @ =[1, 17r
yields

. . Re0) Re || 1
¢(1) = exp{——0' Kyo} = exp{—=[1 1]
2 2 Ro(®) Ro0) || 1

= exp{—[R &(0)+R x(T)1}.
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Therefore, substituting a (t), b (), ¢ (1), and d (1) into (11.76) yields
2
Ry(t+1/2,t-1/2) = %—[exp{—[R 0(0)—R o(T)]}cos(2nf gT)

+ exp{~[R ¢(0) + R (V)] }cos(dnf ot )],

which is the desired formula (11.102) for the autocorrelation of an FM signal with a
zero-mean Gaussian WSS phase.

From (11.124), we obtain

1/3
1 SNRyy 10

= — =693
3 SNR,, 3173

for the modulation index. Then, since By = 15 X 103 Hz, the rms frequency deviation
is given by (using (11.85))

Af =By = -3% x 15 x 103 = 1.04 x 10° Hz.

Therefore, the rms value of W¥(¢) is (using (11.86) or (11.111))
S T 12 5
VR$© = [ [ Sg(f)af ] = 2mAf = 6.53 x 105,

the amplitude of the FM signal is (using (11.109))

(1.5)1/2

TG x 2 x 1071 = 0.204,

a = (4N Af XSNR;)? =

and the rms bandwidth of the FM signal is (using (11.95))
By = Af =1.04 x 10° Hz.

11.14 a) The transfer function for the pre-emphasis circuit in Figure 11.12(a) is given by

i2nfR R.C +R,
i2tfR\R,C +R; +R,’

H,(f)=

which corresponds to an all-pass filter with some low-frequency attenuation. The
transfer function for the de-emphasis circuit in Figure 11.12(b) is given by

1

Hy(f) = ———,
a(f) i2nfR,C + 1

which corresponds to a low-pass filter.

b) The noise power at the output of the demodulator without de-emphasis is given by
(11.122). The noise power at the output of the demodulator with de-emphasis is
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given by (11.126) with (11.119) and (11.127) substituted in:
By

Nowa = | Ha(F)PSy(F)f = 2No(2EY f

By 1+(f/B 1+ (f/By)? ¥

= 4N0( " \’B2[By—B,tan" (B /B,)].

Therefore, we have the ratio
Now (By/By)’
Nowa  3[By/B,—tan-'(By/B))]
which is the desired result (11.128).

11.15 a) Since Sy (V) is approximately constant throughout the passband of H (v), then

[Sxy MIH WA @ [Sy (V)IH V)2 =

A7 XA~ VI

|V|] |

2A SX(f)[l - vI<B

f

Substituting this result into (11.143), with G (v) given in (11.144), yields the result
1/2A¢

Af ~1/2At Af

for the variance of the estimate of the PSD.

b) Using my from (11.137) and 022 from (11.145) yields the result
1/2At

J(1_|_V|_ SR U

mzz Af A AAf S 4 ArAf

for the coefficient of variation of the estimate of the PSD. If we desire
62/m# < 1/100, then for Af =1 KHz we require Az > 9.97 x 1072 sec = 0.1 sec.
The formula (11.143) used to obtain this result is valid only for Gaussian random
processes. However, it is a good approximation for many other types of processes
when AtAf > 1.

For Ar given, in order to obtain GZ/mZ < 1/100, Af must satisfy

a-1-to<L
AtAf 4 AtAf 100
which is approximated by
1 1
< -/,
AtAf 100
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and therefore reduces to Af > 100/At, which limits the spectral resolution.

11.16 a) Since the input and output of the circuit in Figure 11.9 are related by

Vo) = = iLRL V() =V(©)® h(t),
where
B = =50,
R +R;
then the (resistance-normalized) PSDs of the input and output are related by
Svlf) = GRSy (1) = | =% rsvof).
R + Ry

Therefore, we have the relation

Sy (f)df =

Ry 25 d
m— v(FHdf

for the increments of the (resistance - normalized) power.

b) Differentiating the right side of (11.160) with respect to R; and equating the
derivative to zero yields

L2 s,¢uf=0 —> R =R
(R +R)? (R+R.)

Thus, when R = R, , the incremental power dPy (f') is maximized.

11.17 a) Let T; and V(¢) be the noise temperature and voltage for resistor R, and let T
and V,(¢) be the noise temperature and voltage for R ,; then the output voltage V(¢)
of the two parallel-connected resistors is given by (using Thevenin equivalent
circuits, cf. Section 10.7.2)

R, R4
Vo) = _IE—VI(t) s
1

V().
TR, 22()

R, +R

Since we can assume that V;(¢) and V,(t) are independent thermal noise sources,
the PSD at the output is given by

R, ? R, |?
Sy (f) = m} Sy, (f)+ Eﬁ—RJ Sy, ()
From (10.88) we obtain
R, 2 R, 2
2KT,R, = m 2KT R + [m 2KT,R 5,
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where T, is the effective noise temperature for the parallel connection and R, is the
corresponding effective resistance and is given by

R R
R, = .
R,+R,
Therefore, T, is given by
R R
T, o npmmtieail b s
R, +R, R{+R,

T,.

b) From (11.167), we obtain the requirement

T,G,+T
22713 400 x 6 + 800 —-2=10.67

G, = = -
'™ (@T,-T)G, (250-200)x6 3

on the gain of the first stage.
¢) Since T; =280 K and L = 1.5, then from (11.170b) we have

T,=T;(L—-1)=140K.
For G;=1,G,=1L,T;=T, =150, and T5=T, =700, we obtain from
(11.167) the effective input noise temperature,

T T
T,=T,+ e e 150+—~—140 + M
G, GG, 1 1/1.5
For G, (fo) = 10'? and B, =1 MHz, we obtain from (11.174) the available output
noise power for the overall system,

= 1340 K.

T, 1
Po=K[—4 +T.(1-1) + T5]G, (0B,
=138 x 10 [F+280(1—ﬁ)+700]x10 x1x10

=123 x 1072 watts.

11.18 a) Applying Parseval’s relation to (11.179) yields the frequency-domain formula
(11.182):

E{Y(tg)ls (¢t) present} = [ h()s(to—1)dr = [H(F)S™ (Fle™ 2 1" af

= [H@E)S @ )e ™ a.

Applying the convolution theorem and Parseval’s relation to (11.181) yields the
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frequency-domain formula (11.183):

Var (Y (to)ls (¢) present} = jj' Ry@A(t +Dh(t)dt d = JRN(‘C)rh (1)dT

= [Sy(IHF)Pf.
b) Substituting (11.188) into (11.182) and (11.183) yields the explicit formulas

E{Y(¢o)ls(t) present} = cj |S(f)|2 ——df

o SNv()
IS (FHI?
Var {Y (¢to)ls (¢) present} = ¢“ | —2=~—d
0 2 J. NG f.
Therefore, from (11.178) we have the following c¢xplicit formula for the maximum

SNR:

E{Y(tg)ls(r) present}]? 2
SNR g = max{ LU0l )P } = f B
Var {Y (¢g)ls () present} Sy (f)
11.19 For Sy(f) = N, the SNR formula (11.189) reduces to
TIS()P 1T E
SNR .x = df = — tydt =
by using Parserval’s relation. Using (11.188) with ¢ = 1, the impulse-response function

reduces to

he)= [H( e af

i 20f (t0— B 1
=——[JS<f> 2 Cgr ] = —;s om0 = s o0

11.20 For discrete-time signals, (11.178) becomes

[E{Y (s @) present}]2

SNR = ,
Var {Y (iy)|s (i) present}

for which
12

E{Y (io)|s (i) present} = i h(i)s(ig—i) = J’H(f)s(f)eiznﬁodf

i=—co -172
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and

Var (Y (ig)ls (t) present} = E{[N(ip) ® Bigls = i Ry(h(+ ()

J,i=—o0
172

= [ 1HE RSy ()df,

-1/2

where

H(f)= 3 h(e >

Jj=—o00

SF)= 3 s(ei®i

J==e

Sy(f) = i Ry (j)e 29

Jj=—o0

Now, let us define

P S*(f) -iznfi,
GAHAHGFWSy(F) and K(f)a ——ie :
FISHE A NSa)
then the SNR can be expressed as
12
[ [ ek ¢rarl
-1/2

SNR = 12 ’

[ 161

-1/2

which can be maximized by applying the Cauchy-Schwarz inequality. The necessary
and sufficient condition for a maximum is

G(f)=cK(f), c = constant,
which is equivalent to
cS*(f) -iamfiy
H(f)=———""¢ :
v Sn(f)

Thus, the unit-pulse response of this optimum discrete-time linear time-invariant filter
is given by
12

hGy= [ H()e'2igf.

-1/2
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11.21 The matched filter is given by
h(t)=s(g—1),

and the output of the filter is given by

oo

y@)= J.h(t—u)s(u)du = Is(to—t+u)s(u)du

—oco —00

It —tgl
Ta’[2-3———1, lt—tol <T
= 5 1t =1l
Ta“l T -2], T < It—tol <2T
0, otherwise.

This output clearly reaches its maximum at ¢ = ¢, as desired.

11.22 a) Substituting the signal estimate (11.195) into the orthogonality condition (11.196)
yields

E{[S@)-SOIX @)} = E{SO)X @)} — E{S ()X (u)}

[ROIE (X -v)X@))dv ~ Rex (t ~u)

—00

[ RO IRy —u —v)dv — Rgyt ~u) =0,

—o0

which is equivalent to

[ro)Ry-v)dv =Ry@), 1=1-u.

—oo

This is (11.197). Fourier transforming (11.197) yields
Sx (FH ) = Ssx (f),

which has the solution

Ssx (f)
Sx(f)
This is the noncausal Wiener filter (11.198).

b) Since S(¢) and N (¢) are uncorrelated, then from the model (11.193) we obtain the
correlation functions

H{f )=

Reyxy()=E{S¢t+1X()} = Jg(v)E{S(t+’c)S(t-—v)}dv +E{SE+TN()}

—oo
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= [g0)Rs@+v)dy +0=Rs®)® g (1)

and

Ry() = E{X(+1)X (1)}

I 898 E (St +1-v)S (¢ —u)}dudv + E {N (t +T)N ()}

)

H 8()g(u)Rs(t+u —v)dudv + Ry (T) = Rg (D) ® 1, (T) + Ry (7).

—oo

Fourier transforming these two correlation functions yields formulas (11.199) and
(11.200), respectively, for the spectral densities. Finally, substituting (11.199)-
(11.200) into (11.198) yields the desired result (11.201) for the transfer function of
the Wiener filter.

11.23 Substituting the signal estimate (11.195) and using the orthogonality condition (11.196)
in the MSE (11.194) yields

MSE i =E{[S)-S®1?} = E{IS@©)-S@®)IS 1)} = E{[S(t)-S ()18 (¢)}

=E(SA0)) —E(S@OS®) + [E(IS)-SOIX @)}k (¢t —u)du

=E{S%¢)} - E{S@®)S )},

which is the desired result (11.204). Substituting (11.195) into (11.204) yields the more
explicit formula (11.205),

MSE iy = R(0) = [ h(t —uw)E (S()X (u)}du = Rg(0) = [ (¢t —u)Rsy (¢ — )l

—o0 —o0

=Rs©) - [h(@Rsx(Mdt, T=1-u

which, by using Parseval’s relation, can be reexpressed in the frequency domain as
(11.206). Further substitution of (11.198) results in (11.207a),

- (S (FII2 -
MSE in = J‘[Ss(f)——sx-(f—]df = sz(f)[l—lp(f)I"]df,
L Sx(f) e
and, with (11.199) and (11.200) substituted in, we obtain (11.207b) and (11.207¢):
T IG (F)I”SA(F)
MSE i = | [Ss(f) - d
i[ el |G(f)|zss(f)+51v(f)] J

Ch. 11: Special Topics and Applications



The Random Processes Tutor ¢ 187

oo oo

=J‘ Ss(FI)Sn () J =J Ss(f)
2 IG5 (F) + Sy (F) w1 #rif)
for which r (f ) is defined in (11.203).

ar,

11.24 a) From (11.198), we obtain the Wiener filter for the model given in this exercise:
1-I|fI/B
1—IfI/B +Ny/Sy’
0, If | > B.

Ssx(f) Ss(f) If 1 <B

Sx(F)  Ss(F)+Sy(F)

H(f)=

For |f| < B, the Wiener filter attenuates the signal and noise, especially for
If | = B and Ny/Sy not much smaller than unity, whereas the ideal low-pass filter
passes the signal and noise; both filters reject the noise for |f | > B.

b) From the general formula (11.206), we obtain

(] B
S S So(1 = If /BN
MSE, . = J' s(FISv(f) 0 e J' of If 1/B)Nq

2 Ss(F)+Sy(F) T Sl = If1B)+ N,

Ny
So (No/Se+1)B — If |

F Ny So
= NOJBU - Jdaf =2n,B [1 - —S—O—ln(1 + N_o)]’

which results in the normalized MSE ;,

MSE iy MSEq, 2N
E{S(t)} SoB So

Ny So
1 - —In(1+—)].
[1- (1 + 2]
¢) When an arbitrary filter 4 (¢) is used, the MSE is given by

MSE = E{[S(t) - S()I*) = E{S%1)} + E{$?(t)} - 2E{S(1)S (1)}

= Rg(0) + R3(0) — 2 [ Rg (1 )h (u)du

—o0

= [ss(hrdf + [IHEPISs () +Sy(Ndf -2 [SSOHEMf. )

Substituting the ideal low-pass filter transfer function H (f ) = H« (f ) given in part b
into (*) yields

B B B B
MSE =2 [Sg(f)df + [Sy(F)df —2[Ss(Frdf = [Sy(f)df = 28N,
-B -B -B -B

which results in the normalized MSE

MSE =2N0
E{S¥)} So
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This MSE is larger than MSE ;, especially when N /S is not much smaller than
unity. On the other hand, this ideal low-pass filter does not produce any signal
distortion, whereas the Wiener filter distorts the signal by attenuating high-frequency
components.

d) Since the estimation error decomposes as
S@)-S@)=[1-hOI® SE)—h(t)® N (),
then the MSE decomposes as
MSE = MSEg + MSEy,

where the components are given by

oo

MSEs = [ 1D (f)I?Ss(F )df

—o0

MSEy = [IA(F)PSy(Hdf

—o0

and D(f) and A(f) are effective signal-distortion and noise-attenuation transfer
functions:

D(f)=1-H({) ad A(F)=-H({).
For the ideal low-pass filter, we have

D(f)=0, |IfI<B
-1, IfI<B
A= 0, If1>B,

whereas for the Wiener filter, we have

No/Sg
D(f)=
14+Ny/So—-If1/B
1-IfI/B -1
A(f) = / - .
1—If1/B +Ny/Sg - No/Sy

1-I1f1/B

Thus, the Wiener filter yields smaller MSE by attenuating the noise more than the
ideal low-pass filter does (especially for |f | — B), but at the cost of introducing
signal distortion.

11.25 a) Using the hint we obtain
MSE =E([S(¢t)-S ()1} = E{[S"(t)-S"()]%},

where
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St)=N(t), $'¢)=X"(t)® h(t), and X'(t) =N () — No(t).

Therefore, the Wiener filter that minimizes the MSE is given by (11.198) with S
and X replaced by S’ and X',

SS'X'(f) _ SNl(f)
SxA(f)  Sy(F)+Sn,(f)

H(f)=
b) For the noise PSDs given in this case, we have

1, f for which Sy (f) # 0 and Sy (f) = 0
HF) =10, f for which Sy, # 0 and Sy (f) = 0.

Therefore, the estimate $ (t) becomes
S@)=5@)+Ny1) — h(t)® [N (1) =No(t)] = S () + N1(t) = N1(t) = S (¢)

and the signal S (¢) is perfectly recovered.

11.26 By using (2.45), the MSE can be expressed as

MSE = E{E{[X(1-©)-X (t-0)]%|8}} = E{[X(-8)-X (@ -0)]2}d0.

~N|=
Oy

To minimize the MSE, the error X (t—-0@)—-X(t —©) must be orthogonal to the
measurement Y (u —0) (cf. (11.196)),

E{X¢t-0)-X(-0)Y(u-0)} =0

or, equivalently,

E{X(-0)Yu-0)}d6. *)

Oy 3

T o
: _1
= £—£h(V)E{Y(t—9~v)Y(u—6)}dva’6_ !

Since X (¢) is WSS, then

T
1
- _([E (Y(t —0—=v)Y (u —0)}d0

T
L & o . ,
== [ S Re@W-ip@—0—v-jT)pu—0-iT)d0
0 j,i=—eo
T (=~}
= —]1:.[ 2 RxGT)p(-0-v—jT)p(u—6-kT—;T)d6 (usingi —j =k)
0 j,hk=—c0

S Ry (D) [ p ¢ —0—v)p (u —0—KT)do (using ¢ = 0 + JT)

—co —co

1
Tk
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= % i RX(kT)j(t—u —v+kT +0)p (0)do, (using o =u — ¢ — kT)
k=—o0 —oco
1 oo
= ?kzz_mRX(kT)rp(f —u—-v+kT)
and
- .([E (X (t —8)Y (u —0)}d6 = 7{ jEmRX(t — 0T )p(u —0—T)d0

=1 [Ry-0p@-0)do  (using ¢.=0 + JT)

= %_[Rx(t ~u+0o)p(c)do (usingc=u —¢)

= %Rx(f—u)®l7(—[t—u])-

Substituting these two results with T =7 — u into the orthogonality condition (*) yields
> Ry (kT)r,(1—kT)® h(1—kT) = Ry (1) ® p (-7). (**)
k=—o0
Fourier transforming (**) yields
HOIP(F)PSx (F) = Sx (FHP™ (),
for which
SF)= 3 Ry(T)e 24 =% 3 Sy(f —kIT).
k=—c0 k=—c0
Thus, the filter that minimizes the MSE is given by
Sx(f)

TP() 3 Sy(f —kIT)

k=—oc0

H{f)=

for all f for which P(f) # 0, and H(f) is arbitrary for all f for which P (f) = 0.
The minimum MSE is then given by (cf. (11.204))

MSE 1, = E{[X (t —-©)-X (t - ©)]X (t - ©)}
=E{E{X(t-0)-X(-0)X(-0)0}}

T
=Ry(0) - — [ E{[Y(: -0)® h(t —~0)IX (t —6)}d0
0

~N |~
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T o

=Ry ©) - 7 | [ha-EX©-0X(@-0))dvae
0 —oco

= Ry (0) - %Jh(t~v)[RX(t—v)®p(—[t—v])]dv

8

= Ry (0) = 7 [ 1Ry )@ p ()l

= [15x(F) = ZHG P ()5x (f )1df

= JSx<f>[1—iSX(f)]df= [sx@1-— Bl

THO ~ 3 Sy(F—k/T)

k=—c0

laf

(where Parseval’s relation and the convolution theorem were used in the next-to-the-
last line). This result is independent of p (¢) as long as P(f) # 0 for all f for which

Sx(f)=0.
If Sy (f) =0 for |f | > 1/2T, then MSE ;, is zero
12
Sx(F)
MSE in= | Sx(F)l1- df =0
min -i’-/z X(f [ Sx(f)] f
and
T
H(f)=——.
) 10

11.27 Using the model (11.208) and the detection statistic ¥ specified by (11.209), we obtain
T2
E{YIS() present} = E { [[ k(u, v)X @)X (v)dudv )
-T2
T2
= [ k@, v)E (IS @)+ N @)IS ) +N (v)]}dudv
-T/2
T2
= [[ kG, )R, v)+N oS —v)]dudy
-T/2
T2
E{YIS() absent} = E { [ ku, v)X )X (v)dudy }
-T2
T2

— ”k(u,v)E{N(u)N(v)}dudv
-T/2
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T/2
= [ k@, vINoB@ —v)dudy.
-T2
and
T2 T2
E{Y2S(t) absent} = E{ [[ k@, X @)X 0)dudv [ kw, 2)X W)X (2)dwdz }
-T2 -T/2
T2
= [[I] k@, vk v, 2)E (N @N 0IN w)IN (2)) dudvawdz
= )
T2
= NEJ[[] k@, vikow, 2)i8 —v)80w —2)+ 8w —w)d(w —2)
-T/2
+ 8(u —z)d(v —w)]dudvdwdz (by Isserlis’s formula).
Therefore,
Var {Y IS (¢) absent} = E {Y2|S (¢) absent} — (E (YIS @) absent})2
T/2
= No J[] k@, vIkw, 2)8u —w)(v —2)+8u —2)8(v ~w)dudvdwdz
-T/2
T2
= N [[ K%, v)dudy  (since k(u, v) = k(v, u)).
-T2

Substituting these results into the definition (11.211) of deflection yields

T2 T2
| ] e, v)R (, v)+ N —v)ldudy — [[ kG, vIN oS —v)dudy |
D= -T2 -T2
a T2 "
[ZNO2 _U k2w, v)dudv |
=T/2
T2
| [ ke, vIRs G, v)dudv |
__Tp
- T/2 - :
[ZNO2 _” k?(u, v)dudv |
-T/2

as desired. The reason that we can assume that the kernel is symmetrical,
k(u,v)=k(v, u), without loss of generality is that when k(u, v) # k(v, u), we can

use k’'(u,v) 4 %[k (u,v)+k(,u)] in place of k(u,v), without affecting the

detection statistic (11.209), and clearly the kernel k’(x, v) = k’(v, u) is symmetrical.
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11.28 a) Using the change of variables (11.215) in (11.214) yields the formula

T T=1th2 o
Y = 12 [Rs | x¢+v2x@-v2ddt= - [RyRy(Wrd7
NoT r ) N¢ .

for the detection statistic, for which Ry (T)r is the correlogram defined by (11.217).

b) Applying Parseval’s relation to (11.216) and using (3.4) yields the frequency-domain
formula

17 17 1. 17
;(%—LRS TRy (T)ydT = N—Oz_'[oSs(f)—T—IXT(f)Ide = N—g__[OSS(f)PT(f)df,

which is (11.218), where P (f) is the periodogram defined by (11.219).

11.29 a) Substituting the optimum kernel (11.213) into the deflection formula (11.212) yields

T2
| [ cR@w —v)duav | o
-T2 1/2
D pax = 7 = [ S _U Rsz(u—v)dudv] s
0 -T/2
[2v2 [[ ¢ 2R —v)dudv]"”
~-T/2

which is (11.222).

b) Using the result of exercise 7.4 in (11.222) yields the simplified formula (11.223). If
T greatly exceeds the correlation time T, (where |Rg(7)| < Rg(0) for T > 1), then

It
-— =1, Itl<T,
T 0

Therefore, (11.223) can be approximated by (11.224).

11.30 Applying Parseval’s relation to the detection statistic (11.226) yields
e T [T-ltl)y2
Y = [h@Ry(WrdT = - [ r@3x0+v2x @ -v2ddr.
No_.. Nox ¢impe T
Now, by using the change of the variables u = ¢ + 7/2 and v =t — 7/2, the preceding
equation can be expressed as (cf. (11.214)-(11.217))

1 T2 1 T2
Y = —— || hu =X @)X v)dudv = —— | Su)X (u)du,
N OT —'gz N OT -T2

for which § (u) is given by (11.229). This is the desired estimator-correlator formula.
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11.31 The SNR ,, for a known signal in WGN is given by (11.190),

E So
SNR ax = — = 2BT—.
max NO NO
The SNR .. for a random signal in WGN can be determined from (11.224):
T T 12 T 12 So
SNR pax = [== | S&(F)af ]~ = [—==2BS¢] " = BT)>—,
max 2N02_'£, N ZN(:)Z 0 NO

where S is given by

172

S02 (55 [ s¢ar1™

11.32 @) Multiplying both sides of the AR equation (11.230a) (with i replaced with i + j) by
X (i) and evaluating the expected value of this product yields

E{XG+)DNXWO}+a EXG+j-DXE)} +aE{XGE+j-2)X@)}+---
+a, E{X({+j—n)X0)} =bE{Z({+j)X()}
or, equivalently,
Ry(N+aRx(—D+aRy(—2)+ " +a,Rx(—n) = bRz (),
which is identical to (11.233).

Multiplying both sides of (11.230a) by Z (i) and evaluating the expected value of
this product yields

E{ZO)XW)} + a1 E{ZOXE-D} +aE{Z@XE-2)} + - -
+a,E{Z()X({—-n)}=bE{Z(i)Z(i)}
or, equivalently,
Rzx(0) + aRzx (1) + aRzx (2) + - - -+ a,Rzx(n) = bRz (0) =b,
which is identical to (11.235).

b) Substituting the regressor (11.241) into the orthogonality condition (11.242) (with p
replaced by j) yields

E{(X()X(i-))} =Ry ()) = E{X ()X (i - j))

= 3 (a)E{X(-p)X(G-))) ==X a,Ry G =p), J =1,
p=l1 p=1

which is (11.236a), as desired.
¢) For n =2, we obtain from the Levinson-Durbin algorithm (11.237) that
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b;(ll) [Ry (@) + ay(DRx (D]

ay(2) =

_ —Ry (0)
T Ry O - Ry (VP
_ Ry(P - Ry (ORx 2) “
[Rx O - [Ry (D>
b22) = [1 - a3 (Q)Ib*(1)

[Ry (2) — [Ry (DTY/Rx (0)]

[Ry (DI = Ry (ORx (2) 12| [Ry(0)]* — [Ry (1))
[Rx (0)12 — [Ry (1)1? Ry (0)

[Rx (O)F — 2Ry O)[Rx (D) = Ry (D[R (D)]* + 2[Ry (DIRx (2)

= (F%%)
[Ry (0)12 — [Ry (1)]?
and
Ry (1) [Ry (D> = Rx (O)Rx (2)
2) = 1) + 2 H=- 1+
a12) = a;(1) + a,2)a;(1) RX(O)[ [RX(O)]Z_[RX(I)F]
_ Ry(WRy@) — Ry (DRy (0) -

[Ry (0)12 = [Ry (1)]?

Alternatively, we can expand the Yule-Walker equations (11.236a) with n =2 and
j=1, 2, to obtain

Ry (1) = —a 1Ry (0) — ayRx (1)
Ry (2) = —a Ry (1) — a,Rx (0),
and then solve them for @ and a, to obtain
_ Ry(DRy(2) — Ry (DRx(0)
Ry OP - Ry (DP?
[Ryx (1)]* = Ry (2)Rx (0)
2= 7 g ¥
[Ry (0)]° — [Rx (1)]
which agree with (**) and (*). Then, we can solve (11.236b) for b2 to obtain
b2 =Ry (0) + a;Ry (1) + ayRx (2)
Ry (DRx(2) — Ry (DR (0) o BF [Rx (1)]* — Ry (2)Rx (0)
[Ry () ~ [Ry (D] Ry OF - Ry (VP
Ry O = 2Ry O)[Rx (VI* = Ry (O)[Ry D))* + 2[Ry (DFRx (2)
1 [Rx )% = [Ry (D]

a

=Ry (0) + Ry (1)

’
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which agrees with (¥**). Therefore, the Levinson-Durbin algorithm yields the
solution to the Yule-Walker equations.

11.33 Substituting (11.240) and (11.241) into the necessary and sufficient orthogonality
condition (11.242) yields (11.283). Replacing i with i —p in (11.240) and then
multi%plying both sides of (11.240) by Z (i) and evaluating the expected value yields

E{ZGZG ~p)) = ——[E(ZGX G ~p) ~ 3 [-a,IE(ZOXG —p -]
b(n) “

=L S MEZ@OXG-p-)) p=1,23...n (using(11.283),
b(n)q=1

which is (11.284). Further use of (11.283) in (11.284) leads to (11.285). Thus, since
b(-) and Ry (-) are bounded sequences (as explained in the exercise statement), and
the number of terms in the summation in (11.285) is finite, and a,(n) >0asn — oo,
then Rz(p) =0 for all p #0 in the limit # — oo. Thus, the prediction error Z (i)
becomes white as the order n of the predictor grows without bound.

11.34 @) For Y, & AX,, we obtain from (1.41)

1
Y )=—— X
fy,(Y,) lAIfX"( n)

and, therefore, the relative entropy of Y,, is given by

1 1
H{,)=E{ln[————1) = E {In[——
(n) = Bl gy = Bl %

= H(X,) + In(IAl).

1} + In(lA 1)

b) For a lower triangular matrix, the determinant equals the product of diagonal
elements. Thus,

[A] = g"(0).
Hence, we have
In(lAl) = nlnlg (0)I.

c) From (11.247), the relative entropy rate for Y (i) is given by

— . 1 1
Hy = lim —E {In[———
Y o Se n fy,(Y,)

which is (11.288).

1) = lim %H(Xn)+lnlg(0)| = Ay +Inlg (0],
n—>oo
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d) Finally, substituting (11.289) into (11.288) yields the difference

172 172
Hy - Hy =gl = [ G (F)ldf =% [ miG ¢)Hiaf,
-1/2 -1/2

which is the desired result (11.249).

11.35 To derive the backward-prediction-error recursion (11.258), we proceed as follows.
Substituting (11.237e) into (11.258d) yields

n-1

én(i) =X(@-n)+ X l[a,(n-1)+a,(n)a,_,(n -DIX({@-n+p) +a,(n)X ()
p=1
=X({@—-n)+ nil a,(n -DX@G@—-n+p)+ a,,(n)nz_:1 an_p(n -DX({@—-n+p)
p=1 p=1

+a,®m)XG)
v n-1
=E, (i 1) +a,(m)[ Y a,(n =X ~q) + X ()]
qg=1

= Vn—l(i - 1) +a, (n )én—l(i )7

which is the desired result (11.258¢).

11.36 It follows from the orthogonality condition (11.242) that
E{X(H)~-X@)X @) =0

and, therefore, that the minimum mean-squared error B? for mth-order predictor for
any stationary process is given by

B%=E{X%()} - E{X()X ()} *)
Substituting the expression
RG)= 30X —p) (+)
p=1

for the m th-order predictor into (*) yields

Ry (0) = B? - f;ochX(—p).
p=1

Also, substituting (**) into (11.242) with p there replaced by j yields

Ry() == 0,Ry(G=p), Jj21.
p=1
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These last two equations are identical in form to the Yule-Walker equations (11.236).
Now, if X (i) is an rth-order AR process (11.230a), then it can be treated as an mth-
order AR process (m >n) with parameters a, =0 for p >n. It therefore follows
from the Yule-Walker equations (11.236) that the above equations are satisfied with

o, =a,, 1<p <n
o, =0, p >n
B=>a.

Thus, the mean-squared prediction error for order m > n is no smaller than that for
order m =n.

11.37 a) By using the Levinson-Durbin algorithm (11.237) for the specified process, we
obtain

a(1) = —Ry (1)/Ry(0) = —r
pA 1) =[1-aZ)IRx©) =1 - r?

-] ! 2
ay)2) = W[Rx(z) + qg,laq(l)Rx(z—q)] =12 [r?-r3=0
b22) =[1 - aZ@)Ib* 1) =b*(1)=1-r?
ay2) = a;(1) + a,Ma, (1) = a,(1) = —
- 2
a53) = ——[Ry(3) + Xa, DRy B~q)] = ——[r> -’ =0

b42) g 1-r
b23) =[1 — a2 B)b%2) = b*2) = b (1) =1-r2
a,(3) = ay2) + a3(3)a(2) =0

a1(3) = a(2) + a3(3)ay2) = a(2) =-r

a,(n)=a, j(n)=---=ayn)=0
b2n)=b*n-1)=---=b¥1)=1-r?
any=an-1)=---=a1)=-r

Thus, the nth-order predictor is identical to the first-order predictor for this process:
X@)=rX@G-1).

Therefore, for r > 0, X(i) is an attenuated version of X (i —1) with the same sign,
and for r <0, X (i) is an attenuated version of X (i —1) but with opposite sign,
reflecting the fact that X (i) is an oscillatory process for r < 0.

Ch. 11: Special Topics and Applications
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b) The autocorrelation for the specified process X (¢) is given by
Ry (i) =Noh(i))® h(i),

where N is the average power of the white excitation. We can use the Levinson-
Durbin algorithm (11.237) to obtain coefficients {a;(n)} }l=1 for the nth-order
predictor. The result for any n > 2 is

a,(n)=a, ((n)=---=asn)=0
bXn)=bin—-1)=---=b*Q2).

That is, an nth-order predictor can do no better than a 2nd-order predictor. The
reason for this is that X (i) is 2nd-order ARMA process, which is a 2nd-order
Markov process. In comparison, X (i) in part a is a 1st-order AR process, which is a
1st-order Markov process.



Chapter 12

Cyclostationary Processes

12.1 To verify the Fourier-coefficient formula (12.6), we substitute (12.4) into (12.6) (with o
replaced by B) to obtain
72

R = Jim % jRX(tH/z, t —1/2)e 2B gy
EEGala i ))
1 Z/2
- E RXa(’C) lim — J. eiznat ,—i2npt g
a Z—>oo Z_le
. RE(), =
— Z R&t) lim M = X[}(T) =P
S e mMa—PB)Z 0, o # .

Therefore, (12.6) is indeed the correct formula for the Fourier-coefficient.

12.2 a) Since
Ry(t+1/2,t —t2) =E{Y (@t +TU2)Y (t —1/2)} = E{X (¢t +to+TU2D)X (t +17—T/2)}
=Ry (t +tg+T/2, t +1¢—T/2),

then the cyclic autocorrelation for the translated process Y (¢) is
zn

RH(@ = lim — | Ry +u2, 1 —u2)e 12 gy
Zoe Z 7p
Z/2
= Jim == IRX(t+to+r/2,z+t0—r/2)e-f2“°‘fdt
Zae L zp
Z12+1g
= lim ~ [ Ry+u2, ' —2)e T e T (1 =t 4 1)
L -‘Z/2+t0

— RXQ(T)ezanO'

b) For a real vector process X(¢), the cyclic autocorrelation matrix is given by
RE(1) = <E (X(t +2)XT (t —=1/2)}e 2™ > = <Ry(t +1/2, t —T/2)e 2>,

It therefore follows that Rg(t) has the symmetry properties

200 ¢ The Random Processes Tutor
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RE(-—1) = <E {X(t —t/2)XT (¢ +7/2)}e 2™ }>
= <Rx(t +7/2, t —1/2)T e 2™ > = R(T)T
and
Rx%(1) = <Rx(t +7/2, t —1/2)e’ 2% >

= <Ryx(t +7/2, t —=T/2)e 2 >" = RE(1)".

12.3 a) The time-averaged autocorrelation of the frequency-translated process U (¢) is given
by
<Ry>(t) = <E{U(t +U2)U (t —1/2) >
= <E {X (¢ +71/2)e T HUDY (¢ —1/2)e "=V}
= <E X (t +T/2)X (t —1/2)}>e T = <Ry >(T)e T
and similarly for V(¢). The time-averaged cross-correlation of the two frequency-
translated processes U (¢) and V (¢) is given by
<Ryy>(®) = <E{U(t +12)V (¢t —12)" }>
= <E {X (t +1/2)e VDX (1 —1/2)e T~ TVDY>
= <E {X(t +T2)X (t —T/2)e 2™ }> = R (7).
b) Fourier transforming (12.296a) and (12.296b) yields the symmetry properties

oo

[R¢(ve 2 dr = [RE@e 2SN = SE(-f)

= [RE@T e = S(F ),

which is (12.297a), and

oo oo

[Rg@T e 2 4t = Sg7(F )T = [RY@)" €27 "

—co —oco

= [ [ Ryme 0 ac]” = Sg(FY",

—0c0

which is (12.297b).

12.4 Let A (¢) denote the window function

{1, It < Wiz
h() =

0, otherwise;
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the cyclic-correlogram (12.25) can then be reexpressed as

R, Dy = % [ Xt +u+U2)X ¢+ =02k (u + U2 (e ~T/2)e ™20+

- %I[X(t+v+‘c)h(v +T)e—i1t0t(t+v+’t)][X(t+v)h(v)e—-iﬂ?01(t+v)]dv (V =u —1/2)

= %_LY(:, VDY (£, v)dv,

where the two bracketed terms have been identified as Y (¢, v +7) and Y (¢, v). Fourier
transforming and applying the convolution theorem yields

[R&G, vge 1 = —lw—?(z, P, —F).

—co

But
oo wi2
Y(t,f)= .[X(t+v)h(v)e—i2n(f+(xl2)(t+v)dv — J X(t+v)e—i2n(f+0l/2)(t+v)dv
o0 -Wi2

t+W/2

j X (v)e P02V gy = X (t, £ +0/2)  (using (12.20))
t—-Wi2

and
Y(t,—f)=Xyt,—f +0/2) = Xy (¢, f —ov2)".
Thus,

jRX“(z, Ve 2 g = %XWU, f o)Xy, f —02)" = P3t, fw

—o0

(using (12.24)). This verifies the cyclic-periodogram-cyclic-correlogram relation.

12.5 a) To obtain (12.41), we substitute (12.4) into (12.39) to obtain

N
<R, >(t, =l Ry (t +nT, u +nT
x>r(t u) = Hm ——r 3 Ry(t+nT, u+nl)

n=-N
= lim 1 % ZRXa(t_u)eina(t+nT+u+nT)
N—o o 2N+1 n=-N o
N
= RXMt —u eimx(t+u) lim ei2nomT.
%‘ x(t=m) Noeo 2N+1n=Z_N

Let us consider the quantity
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N
JT A hm i2nonT
D)= N+, Z ¢
1 1 — @i2MO(N+DT | _ ,=i2r0(N+D)T
= lim [ . + : -1]
Noow 2N +1 1-— ezZnotT Lo e—12naT
. 1= etha(N+1)T
_1vh—r>nw 2N [ZRe{ _ pi2noT }=i]
; 1 sin[toN + 1)T']
= 2 oNT ) ———————1}.
Jim oy [2cosmanT) sin(moT) ]

It is easily seen that for oT # integer, J(oT) = 0. For oT = integer, we have
N

Y 1=1

n—-—N

J@T)= 1
() 1m2N

Therefore,

<RX>T(t’ u) - Z R}r{n/T(t _u)einm(t+u)/T’

m
where m represents all the integer values of oT .
Substituting (12.41) into (12.43), with T' replaced by T, yields

Ry(t,u)=<Ry>@—u)+ 3 [ 2 RPTi(t —u)e ™ T _ Ryt —u)].

j m=—e
The fact that (12.6) with o, = 0 is equivalent to (12.37), that is,
Z2
RO —u) = Tim — [ Re(+t,v+u)dy = <Ry>(t —1),
Lo L 7p

can be used to further reduce (12.43) as follows:

RX(I,M)=R)?(I—M)+Z 2 R}r{n/T](t u)einm(t+u)/Tj.
s

But this equation is equivalent to (12.4), which can be expressed as
Ry(t,u)= Z Rf(t __u)ezn(x(t+u) - 0(2‘ 4+ Z Rxa(t u)et‘n:a(t+u)
oz0

where o represents all integer multiples of all the fundamental frequencies {1/7}}.

The input-output cyclic-autocorrelation relation for linear periodically time-variant
transformations can be derived as follows. Applying the definition (12.6) to (12.44)
with (12.45)-(12.46) substituted in yields

zZr

REM) = lim ~ [ Ry(t+72, t —12)e =2 dr
Z— o0 Z -Zn



204 ¢ Gardner & Chen

Z|2 oo

= lim — L] B (he +772, )X@)XT 00T (¢ =172, 91 Jdudv e=27% gy
V% 2712 o

Z/Z oo

= lim — j _U h(t +7/2, u)Rx(u, v)hT (¢ =1/2, v)" dudv e 2% dt
ZF L7 o

Z/2 o
= Jim _.[ J-J. 2 g, (t +T/2—-u)Rg(u, v)gL(t —12-v)"

Zoe —Z 2 —o0 n,m=—00
% ei 2n(nu—mv)/IT dudv e—i 2nou dt

Z/2 oo
= lim —j [ = ge+w2- u)zRQ(u y)e ™Gl (; _ g2 _y)*

Zoe L _7p e n,m=—

e i2n(nu—mv)IT dudve —i 2ot dt

Using the changes of variables 1’=v — u and ¢"=¢ — (u +v)/2 in the above equation,
and then time-averaging yields (12.298). Using the given matrix identities in (12.298)
then yields (12.299), from which the desired result (12.50) follows.

b) Since

[ r&, (=ve 24 = GI(-f +042)Gy (f —0u2)

—co

and

J'Roc (=T () =im(n+mYUT =i 2%f T — GO~ (n=m)T(f n+m)

2T

—co

then applying the convolution theorem to (12.50) yields
Sya(f) - J-Ry(l(,t)e—iZTEf’rdT

i i (S~ (a=m)T(p 4 DM

n,m=—oo

n+m
2T

VG I(—f +0/2)G,, (-f —a/2)}

i G, (—f +a/2)[Sg==VT(f 4

n,m=—oco

n+m

)] GI(—f —02)"

n

S G 028 mTf ~ BEINGT (f -y

n,m=-—oco

n+m

Il

3 G, (frou2)Sg--miT(f - PEMGT(r _ gyoy*

n,m=—oo
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(since SY(f) = Sy(—f)), which is the desired input-output cyclic-spectrum relation
(12.53).

c) For a linear time-invariant transformation we have h(¢, u) = h(t —u) and, therefore,
(12.46) yields
h(t), n=0
&.M=10 =0

Consequently,

re,@ = [ gl +12)g(t —U2)e T dr = rI(1)8,8,,.

Therefore, the input-output relation (12.50) reduces to
R () = tr {RE(T) @ ri{(-1)},
which is (12.55) and, as a result,

SHF) = [ RE@e ™ dn = ir (SY(HHT (of +a/DH" (f - u2)

= H(~f +o/2)SH~F HT (—f —a/2)" = H({f +w2)SZ(F HT (f —aw2)*

(using S¥*(f ) = Sy (—f)), which is (12.56).
d) Let p =n — m; (12.50) can then be expressed as

REM = 3 i ([REPIe mpITIQ r%, ().

n,p=-—oo

If X (¢) exhibits no cyclostationarity, then

RgPT(7) ={

Therefore, the input-output relation (12.50) reduces to

<Ry>(1), oa=p/T
0, a#plT.

B9 = Y m{[Re>@e ™ PTN@ 1, (D) o =p/T
Y - n=—oco
0, oa#plT,

which is (12.58), and its Fourier transform (12.53) reduces to
= P _2n-p T o Py
Z_ooGn(f+ 2T)<SX>(f 2T )Gn_p(f 2T) ] (x:p/T

SYa(f) = p=
0, azpl/T
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_ Z Gm+p(f+a/2)<SX>(f____)G (f 0/2), a=p/T

=9 e oo
0 a#plT,
which is (12.59).

12.7 @) To derive the relation (12.61), substitute (12.44)-(12.46) into (12.60) to obtain
Z2
Ry (® = lim E | Ex@+u2) j XT ()T (¢ =2, u)du Je ™2 gy

-Z/2
Z/2 oo

= lim — j | Ry +172, u)hT (¢ =12, w)due =2 g
Bsee L 10, ae
Z[2 o

= lim — j [ Ry +72, w)gl(t —v2—u)ei Wil g2 gy
2= L gp e
Z/2 oo

lim — Ry(t +71/2, t —1/2—-w)g, (W
Jim o] [ 3 R &ov)

X e—i2n(a—n/T)te—i21tn(w+1/2)/wadt (using w=t—172-— u)

JRa nIT(7 4 )e~im@—n/T)w gT(w )e12m W+TUDIT g,

Il
oo

oo
oo

3 JR)%—n/T(,C_*_W)e—inn(w+‘r)/Tg{(w)e—inawdw

N=—00 —oo

2 [ROL n/T(T)e—lnn’t/T]® [g ( T)eznat]

n=—oo

— i [R)%+m/T(T)eiTcm‘E/T] ® [grzl'(_,c)*eina‘c ] (Sil’lCC g, = g:)

m=-—oo
b) Applying the convolution theorem to (12.61) yields

Sxy(f) — foy(‘C)e_lznde’t — E Sa+m/T(f T)GZ(f —(X/Z)*,

—oco m=—oo

as desired.

¢) For a linear time-invariant transformation, we have h(z, u) = h(z—u) and, therefore,
h(t), m=0
g.(U=10  m=zo0
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Consequently, (12.61) and (12.62) reduce to
| Ry (1) = RO ® [ (-1)" '™ ]
and
S%r(f) = SR(HHT (f —0/2)",
as desired.
d) If X (¢) exhibits no cyclostationarity, then
RE+MT(7) = { <Ryx>(1), o=-m/T
0, o #-m/T.

Therefore, (12.61) and (12.62) reduce to

R { [<Ry>(D)e ™ 1@ [gF (—0)"e!™ ], o =p/T
0, oa#plT
{ [<Rg>(De ™ 1@ [g](-De'™ |, a=p/T
0, o=plT
and
<Sy>(f +02)GL (f —o/2 oa=pl/T
58y | SOU +DCLE a2y, a=p
o#p/T
_ <SX>(f +02)GI(f - /2), o=p/T
0, oazplT

for all integers p, as desired.

128 a) Let X(1)=[Z@¢), W)]' and h(r, u) be given by (12.77); we then obtain the
QAM form from (12.44):

0@t = [ h(, w)X()du

oo

= [ [cos@nf )8t —u)Z () + sin(2nf o )8(¢ — )W (u)1du

= Z(t)cos(2rf gt) + W (¢ )sin(2rf ot ),

which is (12.76).

b) To obtain the cyclic autocorrelation for QAM, we proceed as follows. Using (12.77)
and (12.46), we obtain
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L i o
g (= 20001 —inl n =zl

0, n#xl
and, therefore,

1 im

re,@ = [ gl +u2)g,( —u2)e ™ dr = :1‘-8(1)[ } for n,m =4I,

—in nm
and
ry,®=0 for n,m #tl.
Since
Rg® = lim ~ [ E{
A 7y W (t +1/2)
R7(T) Ry (D)

22 TZ@e+12) _
[Z* (¢t —12) W@ —1/2)]1} e i gy

Ryz(t) Ry ()
then from (12.50) we obtain (using f o= 1/T)

RQ(X(,I:) - Z tr {[Rg_(n_m)fo(T)e_in(n+M)fOT] ® rnam (_T)}

n,m=xl1

Rzu—(n—m)fo(,t) RZ(:V—(n—M)fO(T) 1 im .
= tr {i e—m(n+m)f(,1: }
nom=t1 4 RSSO~ oy g O=E=mf oy | L=in nm
- % Ry oy — inRgy " oy + imRygy ™ o)

" nmRvg—(n—m)fo(,t)]e—in(n+m)f0‘c

= %[RZ“(‘C) + REM)]cosnf o7) + %[Rvgz(»c) — RE,(D)ISin@nf o)
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+ 3 RS o) - Ry o) + in[Ryy o) + Ry @],

n=%1

which is the desired result (12.79).

¢) To obtain the cyclic spectrum for QAM, we proceed as follows. From part b, we
obtain

T 1 .
Jgn('c)e B —2-[1 -in}], ,

Gn(f) = es =il
0, n #%1
and
" » SA(E) Szw ()
S¢() = [RY@e 2 it =
e Swz(f) SW()
Therefore, we obtain from (12.53) (using f = 1/T)
S§F)= Y Gu(f +ou2)Sg o I +mf0)GT(f ~2)*
n,m==%1
+ +
= X8 I mfo) ~ inSyy ;o B meo)
n ,m=x%1
+ imSzy ar M)fo(f fo) + nmSyy " m)fo(f - ;mfo)]
1 ;
=7 {[SZ(f +nf o) + S +nf o)l + in[Syz(f +nf o) — Sz (f +nf 9)1}

n=x1
= 3 087y - S A + inlSup ) + Sgp ),
n=%1
which is the desired result (12.80).
d) ForZ =U and W = -V, we have

N

RY=R§, RE=RY, Rfy=-Rf, and RSy =-RG.

Therefore, with Q =X and o = 0, (12.79) becomes

R)?(‘c) =<Ry>(T) = %[<RU >(T) + <Ry >(T)]cos(2rf ¢T)

+ %[<RUV>(¢) — <Ryy>@sin@nf o)

+ l S RV - R ow)] - in[Roy °@) + Rus? *x)1},

n+1
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which is the desired result (12.81).
e) If U(¢) and V (¢) exhibit no cyclostationarity, then

RI=RZ =Ry =R}, =0 for o#0.
Therefore, for o = £2f ; we obtain from (12.79)
£2f; 1 i .
Ry " (1) = Z[<RU>(T) - <Ry>(T)] £ Z[<RUV>(T) + <Ryy>(0)],
which is the desired result (12.83a). Thus, when U (¢) and V(¢) exhibit no cyclo-
stationarity, we have

Rg(t) =0, o =0, 121,

f) To obtain the cyclic autocorrelation and cyclic spectrum formulas for the complex
envelope and the in-phase and quadrature components in Rice’s representation, we
proceed as follows. Using (12.301a), we obtain

Ry +7/2,t —t2)=E{X(+1/2)X(t —1/2)}

= %E ([T +1/2)e > ™2 4 ¥ (1 +1/2)e 7 2F o472

% [F(t _le)eﬂnfo(t -1/2) ' F* (t _T/Z)e—iZEfo(t—'c/Z)]}

1

= %R r(t +1/2, t —t2)e 700 4 SR +u2, 0 —1/2)e!

+ %R e+ T2, £ —T2)e Y %R (e +T/2, £ —1/2)e 2T,

from which it follows that
zZr

R¥(T) = lim Lg (t +7/2, t —T/2)e 270 gy
X X
Z—ow Z Zn

= %qu(,t)eiznfol' + %RI(}I;‘Zfo(T) + %ng'ltzfo(,c) e %ng‘ (,L.)e-i2nf01:.

Fourier transforming Ry*(t) yields the desired result (12.302a).
Using (12.300a), we obtain

Ry(t +7/2, t —1/2) = E{T(t +v/2)I"" (t —1/2)}
= E{[X(t +7/2) + iY (¢ + U)X (¢ =T2) — i¥ (¢ —/2)]e "2 oF)
=[Ry(t+7/2, t =2) — iRyy (t +T/2, t —T/2)
+ iRyy (t +7T/12, t =T/2) + Ry (t +7/2, t —7/2)]e " 27 oF

and

Ch. 12: Cyclostationary Processes



The Random Processes Tutor e 211

Ry (t +72, t =U2) = E{T(¢t +U2)T(t - 1/2)}
= E{[X(t +T2) + i¥ ¢ + U)Xt —T/2) + i¥ (¢ —t/2)]e 4o}
= [Ry (t +7/2, t =T/2) + iRxy (t +7/2, t —T/2)
+ iRyy (F +T/2, t —T2) — Ry (¢t + 12, t —2)]e ¥,

from which it follows that
VA7)

RE® = lim ~ [ Rp(t+72, t —t2)e 2w gy
Zo=Z 7

= [RET) — iR (T) + iR (T) + R ()]e 2

and

R&%- 1) = R& oy + iRy oy + iRy 7o) - Ry 0w,

Fourier transforming R & (t) and R - (1) yields

SEA) =S +fo) —iSFG( +fo) +iSxx(f +fo) + Sy (f +f o) &
and
S&e (F) =S o) + sy T or ) + iSpg Tof) - Sy T u(r). )

Next, we reexpress (12.89) and (12.90) as
SP() = =SEOu(f + a2y —u(f —1ali2)1+S¢(f u (f —lol/2)+u(=f —lal/2)] (})
=S¢ u(@2+1f D—u (/2= 1f DI-SE(u(@w2=If D+u-w2-1f DI ()
and
Sxy(f) = Syx (=f ) = iS¢ (F)u(f —o/2) —u(=f +ov2)]. (11
Then we substitute the results () and (1) into (*) to obtain (12.302b):
SEF)Y=SF +f{l = u(f +fo+1al/2)=—u(f +fo—lal/2)]
+ [u(f +fo—lal2)+u=f —fo—lol/2)]}
+ 2S¢ +f ) HAu(f +f o= 0W2)=u(f —f o+ 0/2)]
+[u(=f —fo-2)—u(f +fo+ov2)]} (using SY'(-f) = Sx'(f))
=258(F +folu(f +fo—ol/2)+u(=f —f o—lal/2)]
+ 2858(F +fo)lu(f +fo—10li2)—u(=f —f o—lal/2)]
=4S¢ +fou(f +fo—lal/2),
which is (12.302b). Similarly, we substitute the results (71) and (¥71) into (*¥) to



212 e Gardner & Chen

obtain (12.302¢):

s +2
S8 (F) = 5& o)1 - [w(ZEH0

+ [u(“;f" Z1f Du(- “1F D1
#2577 ([l - L) —uer + 22E0)

+[u<-f—°‘+2f°) u(f + ‘“Zf")]}

258 o) (S O If )+ Lo ipi]

48T o yu 2+ o= I 1),
which is (12.302c).
Since (using (12.301b)-(12.301c))
R§(®) = <E{U(t +T2)U" (t —1/2)}e 2% >

= GREO+ GRE O+ GREC @+ LREO,
R¥(T) =<E{V(t+T2)V"(t _1;/2)}e~i2noc:>
1

= RE® -7 lre.@- Rr.r(r)+ Rr-('c)

and

RS/ () =<E{U(t +T2)V* (t —1/2)}e 2" >
i i i i
= —R{ (@ - ZRI% @®+ ZRf—**r(T) - ZR% 0,
then we have the corresponding Fourier transforms
1
S = ZIEE) + S () + SEr () + S (),
1
PP = JIEE) = S () = SEr () + SE (I,
and
S ()= JISEE) = S () + SEr(F) = SE (),
which are the desired results (12.302d)-(12.302f).
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Finally, substituting (12.302b)-(12.302c) into (12.302d)-(12.302f) yields (using
SE()=IST*A)I" and SEL(f) =[S A)I7)
SF) = %[45,;1(;0 +fu(f +fo—lal2) + 485 T 2+ fo—If 1)
+ a8y T f Y w24 fo=If 1) + 4SFHS +F ) uf + o= l0tl/2)]
= S +Fou(f +fo—10li2) + S —fou(=f +fo—l0l/2)

o
+ Sy

o 2+ Fo=1F 1) + Sg T o (= a2+ f o~ If 1),
SHF) = %[ 453 +F Qu(f +F o= lali2) = 483 o 2 +5 o~ If 1)
— 48y Y w2+ o If )+ 4STUS +F O U +f o= D]
= S +fou(f +fo—lal2) + SE(f —fou(f +fo—lal/2)

ST @2+ f o= 1 1) = 8T vz f o= IF D),
and
S () = %[ 4SF +F Qu(f +Fo—lalr2) — 48 T o yu (U2 +F o= If )
+ 485 T Y w2+ fo-If ) = 487U +f o) u(=f +F o= lal/2)]
= IS +FQu(f +fo—0l2) = SKF —fu(—f +fo—lail/2)
=S¢ o U2+ o= 1f D + S5 T =2+ o= If D],

. which are the desired results (12.91)-(12.92).

12.9 a) The synchronized averaging identity (12.42) can be expressed more generally as

Z2
lim Y f@aT)y= Y lim — | f@)e ™ ds
N—o 2N +1 neoN e oo L300 _2[/2

for any function f(z) for which these averages exist. By using the identity
Iix (nT +kT, nT) = Ry(nT +kT, nT) in (12.94) and then considering

f(nT) = Ry (nT +KT , nT )e ™ 2R +kT12),

we obtain
- Z/2
RIGTY= Y lim % [ Ry(t +T, t)e 12+ D)p=i2nmt T gy

m=—se 2= & _7p
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zn
= 3 lim 1 _[RX(t+kT, £)e~i2R@+mITY gy p=iTokT
L= L gp

m=—co

Letting s =t + kT'/2, this equation becomes

ZI2+kT/2

RI*T)= ¥ lim L j Ry (s +KT 12, s — KT [2)e ™ 2MO+miT)s gogimmk
m=—eo 2% £ _zp%kTI

RXa+m/T(kT)einmk

oo

m=—co

* which is the desired cyclic autocorrelation relation for periodic time sampling.

b) Substituting (12.96) into the definition (12.95) yields
$3f) = 3 REGT)e ™I = i R HMIT(KT )e i mmk o =i2mkTS

k=—oc0 m=—oo f=-—o0

=J‘ Y ST (y)e 2T gitmk p=i2Tf gy,

—c0 M=—00 k=—00
Using the identity
- i e n
i2npkT = . S+ —
e = X 8+ 1)

n=-—oco

then yields

ca i 1 3 - a+miT) m_ n
= (L LY
S()=[7 T T SETOR-S 4y
1 & m n
_— Sa+m/T e

which is the desired cyclic spectrum aliasing formula (12.97).
From (12.97) we observe that S,'(f ) has the following periodicity properties:

SXa+m/T(f_%_ n;l)

1 M8

o 1 1
S3(F +4y =+
x (f T) T 2

sgnr — ) - g

~|[=

m n
SXa+2/T+m/T(f LA _)

2T T

M3 ¥ M3
}

§Xa+2/T(f ) =

N|=

|

SXa+m’/T(f _ m;;z _%)

]
N |-
.Mg

§
&

S _%_ n ;1 )

N =
.Mg

=
S
I
3
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1 oo
___? Z SoH-m/T(f ______) SX(f)
n’,m'=—co
and
o+1/T, 1 _L < o+ 1/T+m/T, _L_ﬂ_i
C=3p=7 EH, Sx =257 T)
1 = ’
= Sa+m/T S
Tn’mz,‘;_w (- 2T T)
1 (==
=__f E SX(x+m/T(f _______) SX(f)

12.10 @) We first express the AM sine wave (12.103) in the form of (12.44):

X@0)= [A@)cos@nf gu +0)8¢ —uw)du = [ A@h(t, u)du,

—oco

where

h(t, u) = cos rf gu +0p)o(t —u).
Then, from (12.45) and (12.46), we obtain

h(t +7, 1) = cos2nf ot +e)8(T) = %[e"‘z"f w90 . o @R o+ 015

and

_ei%s(nc), n=1
gn(T) =
n =-1.

—;—e_i% 8(7),

From (12.52), we obtain

@ = [ 8t +02)gn - v dt = e N,y m =1
Finally, substituting this result into (12.50) with T =T = 1/f yields the cyclic
autocorrelation for the AM sine wave X (¢):

REW= ¥ [Ra (n- m)/TO( )e—in(n+m)‘r/T0]® [%ei(n—m)q)os(_,r)]
n,m=xl1

% RAoc— (n=m )/TO(r)e =i+ m)UT o, i (1=m)do

n,m=x=1

— _[R (x(T) —lzTCfoT +R Q(T)elznf(ﬂ +R - 2f0(’t) 12¢0 +RA +2f0(T) —12¢0]
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= SRE@cos nf ©) + LR @e ™ 4 LRI e

b) Fourier transforming the cyclic autocorrelation (12.104) yields the cyclic spectrum
(12.105) for the AM sine wave:

SHF) = [RE@e2dn

—co

= %[SAG(]E +f0) + SAa(f ‘fo) " SAa+2f0(f)e—i2¢o + SAa_zfo(f)eiz%],
where

SHf) = [RE@e2 an,

—o0o

12.11 a) For the QAM signal, making the replacements Q =X, Z =C, and W ==S§ in
(12.80) yields the cyclic spectrum

Sx(f) = % >, (S +nf o) + SE(f +nf o) +in[SS(f +nf o) — Ss¢(f +nf )]}
n==%1

4 2188 -5
n=%x1

a

oy~ inlSge ) + 88 ).
For C(¢) and S (r) jointly stationary, S(f ) at o = 0 becomes
SUF) = <Sx>() = e +10) +Scf ~f 0+ Ss(F +£0) + S5 ~f o)
+ - Bes(f +£0) = Sscf +£0) = $LSesf =1 = Ssc (' ~F o)
= JISCF 470+ Sc(f ~F0)+ Ss(F +f0) + S5 o)
- Ses 470k = Ses(fF =fou]  (sing Ssc(f) = Sés(F))
and S,(f ) at o = £2f , becomes
SE(E) = IS () = Ss(1 £ S5 () + Ses (]
= Bc () = SsUNE LSes(Fy, @ =12f,

and

S¢(f)=0 for aa#0 and o #22f.
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This verifies the cyclic spectrum formulas (12.114) and (12.115) for the QAM
signal.

b) From (12.17), we have

Natals
<Sy>(f +0/2) <SSy >(f —o/2)

1 1
g Sc () - Ss(F N+ Z[Scs(f)r]z

PR E =

(1) 851 + 5 Ses M) +S5¢ = TS5 ()

So(f) = Sq(F)1% + 4[S, 3
_ IS¢ (f) = Ss(F)I” + 4LScs (), o =42,

[Sc(f)+Ss(F)I? = 4[Scs F )i 1P

which is the desired formula for the autocoherence magnitude for QAM.
¢) Equation (12.17) can be reexpressed as
o 4085 (i1 + 4Ses (), 1 + [Sc () =S5 (I [Sc(F)+Ss (FHI?
[Sc(F)+Ss (F)I = 4Scs ()i 1P
HScs(f )1 =4S (F)Ss(f)
[Sc(F)+85 (I = 4lScs (F )i P
1= A1 = lpes (FIPSc (F)Ss (F) , o= £2f
[Sc(F)+55(FII? = 4IScs (F )1
which is the desired result (12.118).
d) Since

Sy ~f0) = Fe () + 55 = 2 Ses ()

Ip2(FHI2=1

=<Sx>(f —fo)e = <Sx>(f —fo)or  IfI=f0
where
Sy>( —f e = 7B () + 55 = <Sy>f =0
<Sx>(f —=foo = %Scs(f )i =—<Sx>(=f =fo)o

(using Scg(=f) = Sés(f )), then the denominator in (12.118) can be expressed as
(12.119).
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12.12

1213

To derive the stationarity condition (12.126), we proceed as follows. From (12.113c),
we have

Re(M) = E{C(t +U2)C (t —T/2)}

- %E {A(t +T2)A (¢ —12)(cos[@( +1T/2) + Dt —T/2)]

+ cos[@(t +7/2) — D(t —1/2)])}

and

Rg(r) = E{S(t +T/2)S (¢ = 1/2)}

= %E {A @t +T/2)A (¢t —1/2)(cos[@(t +T/2) — D(t —T/2)]
— cos[D(r +T/2) + Dt —1/2)])}.

Therefore, in order for Sq(f) = Sg(f) or, equivalently, for R-(T) = Rg(7) to hold, we
require

E{A({t+T2)A ¢ —T/2)cos[@(t +71/2) + Dt —1/2)]} = 0. *)
Likewise, since

Rgs(t) = E{C(t +12)S (t —/2)}
= %E {A@ +T2)A (t —1/2)(sin[D(r +7/2) + D(t —1/2)]
— sin[®( +1/2) — (¢t —T/2)])},

then in order for Sq¢(f ), = 0 or, equivalently, Rq¢(T), = 0, we require
E{A(t +T/12)A (t —1/2)sin[P(t +7/2) + P(t —7/2)]} = 0. **)

The conditions (*) and (**) together are equivalent to (12.126).

Directly applying the definition of cyclic autocorrelation to the PM-FM signal X (¢) in
(12.129) yields

R (T) = <E {X (t +T/2)X (t —/2)}e T2 >

= %<E {cos[(2mf yT+D(t +1/2) — D(t —T/2)]}e 7 27>
+ %<E {cos[4mf ot +D(t +7T/2)+ D(t —T/2)]}e 27 >
=0+ %<exp{i4ﬂ:f0t JE {exp{i ®(t +T/2)+i D(t —T/2)}}e 2™ >

+ %<exp{—i 4rf of JE {exp{—i Dt +T/2)—i D(t —T/2)} }e 724 >

Ch. 12: Cyclostationary Processes
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%<E{exp{i(D(t+T/2)+i(I)(t-—‘C/2)}}>, o=2fg

= %<E{exp{—iq)(t+‘c/2)—ifb(t—1:/2)}}>, o=-2f,

0, o # 0, £2f
which is the desired result (12.130).

12.14 @) Substituting 4 (¢, u) from (12.135) and X (1) = A (1) into (12.44) yields

X(@)= Jh(t, w)A (u)du = j i gt —to—mT)dw —mT A (u)du

—oo —o0 M=-—00

= 3 AGnT)q(t —tg—mT),

m=-—co
which is the PAM signal (12,134).
b) Substituting (12.135) into (12.46) yields

T2
g, (1) = % j Bt +7, t)e i2mtIT gy
-T2
1 T2
= ? .[ Z qt +‘C—t0—mT)5(; _mT)e—ian/Tdt
=T/2 m=—oco

mT+T/2

= l E J. q(S +T—‘[0)8(S)e—i2nnSITds
Tm=—°° mT=T/2

17 y 1
= —T——J;q(s +1-10)3(s)e 2 ds = —q (T-1o),

which is the desired result (12.136).
c¢) From (12.52), we have

@ = [ g, +T2gn(t —UDe ™ dt

1
T2
Therefore, by using (12.50) and (12.137), we obtain

J' q(t+12—t)q(t —12—tp)e 2™ dt = %rqa(‘c)e ~i2mato

2 RAa —(n-m )/T(’C)e —in(n+m )T/T] ® rqoc(_,t)e —i2mat o

n,m=-—oo

|
Rx(r)—?;[

= L[ Z RAa—k/T(T)e—in(Zn—k)r/T 1® rqo‘(’c)e_iznw"

2
T n,k=—oco



220 ¢ Gardner & Chen

= _TZ [T Z RAa—k/T(T)8(’C +jT)ei”kT/T] ® rqa(’c)e_iznw"
j k=—oo
1

= v z RAa—k/T(iT)rqa(T+jT)e—i2n(ouo+jk/2)’

T} k=

which is the desired formula (12.138) for the cyclic autocorrelation of PAM.
d) By using (12.96), (12.138) can be reexpressed as

i i 0L+k/T(JT)elTL'jk]r (X(T+]T)€_l 2notg

1
Jj:

=L S RUGTYr e+ fTye 5%,
T i

Jj=—o0
which is the desired result (12.139).
e) Directly applying to (12.138) the generalized Poisson sum formula with

k(t) =Rg(t), h(T)= i Y RPEHIGT e ik

k =—oc0
and
—i 2mout 0

g@+jT)=r(x+jT)e

which have the corresponding Fourier transforms

o kITer k)

K() =8¢, H()= T

"M8

L
T
and

G(f) =0 +a2Q" (f —a2)e ™,
yields

SHO =K () =26G¢) T HE +3)

1 * —i2mout kIT
= i +o/2 —o/2 0 Sa + +—),
TZQ(f )0 (f )e n,kg (f T 2T)

which is the desired formula for the cyclic spectrum for PAM.
/) Substituting (12.97) into (12.142) immediately yields (12.143).

12.15 @) To obtain the formula for the cyclic autocorrelation for a digital modulated pulse
train, we proceed as follows. We first reexpress (12.146) in the form of (12.44)

X@0)= [h@, u)Y)du,

—oo
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for which
ht,u)= Y q7 (¢t —u)d(u —nT)
n=-—oo
and
Y(nT) = 6(n),
Using the results from exercise 12.14a and 12.14b, we have (in vector form)
T2
g, () =~ [ h(+1, e 20T gr = —q(T)
T—T/Z
and

T (T) = JgnT (t +T/2)g . (t —T/2)e ™ 2 gy

LT " P
- [ of ¢ +u2)qc —v2)e™120 dp = ST

Also, we have

2 Rot l/T(nT)emln Ra(n)

[=—co

Thus, from (12.50), we obtain

oo

RXOL(,C) — Z tr {[R%—(n—m)/T(T)e—in(n+m)’r/T]® r’(;n(_,c)}

— % i tr{[R{Ix—(n—m)/T(T)e—in(n+m)'I:/T]@ Pg(—’C)}
== Lz i r{[R(x l/T(,c)e—tTcl’r/T Z e——thmT/T]®r0L(_T)}

[|=—c0 m=—oco

= =5 X o (R§T@e VY T 3 8@—nT)] @ 1)
]=—c0

n=—o0

—;:tr{[ 3 8(t-nT) 3, REVT(T)e ™1 ® r&(~1))

n=-—co ]=—c0

% f‘, r {[8(t—nTIREM)I @ r&(—0)}  (using (12.96))

i r {R§(n rg(nT —7)}

HI'—‘

ir {rg(v+TRFG)),

oo ]

L
T;
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which is the desired result (12.147) for the cyclic autocorrelation for a digital
modulated pulse train.

b) If {8(n)} exhibits no cyclostationarity, then we have from (12.148)
RY() = <Rs>() = RE(G)e ™ T, o =k/T.
Therefore, (12.147) reduces to (12.150).
¢) Fourier transforming (12.150) yields
SE(f) = % Y o {QUf +2)QT (f —0/2)" ! I <R>(j)}e ™7

j:—oo

tr {Q(f +0c/2)QT(f —o/2)" i <R8>U)ei2n(f+w2)/‘T}

J=—0o

N =

r {Q(f +0/2)QT (f —ov/2)" <Sg>(f +ov2)T )

Il

~|[=

= %QT(f +0/2)<Sg> (f +/2)Q" (f —/2), o =k/T,

which is the desired formula (12.153) for the cyclic spectrum.

12.16 For the FSK signal, applying the definition of autocorrelation and the conditional
expectation property (2.45) to X (¢) in (12.159) yields

Ry(t+u2,t-12) = 3 E{A,(t +T2)A,, (¢ —12)}q (¢ —nT, +7/2)q (t —mT, —T/2),

n,m=—oco

for which

E{A,(t +T2)A,,(t —T/2)} = %E {E {cos[2n(F, +F, )t +7(F, —F,)t+©, +6,]
+ COS[2M(F,, —F )t +T(F,, +F,,)1+©, =8, 1}IF,,F,,}

= %E{cos(ZnF,,T)}&z—m-

Therefore, we have the desired result (12.160), in which E {cos(2rF,T)} is
independent of n.

12.17 a) The staggered QPSK signal has the form
X (@) =C(t)cos@mnf ot +0g) — S (t)sin(2Tf ot +dyg),

for which

C@)= 3 CT,)q(t~tg—nT,~T,I2)

n=-—oo
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S@)= 3 ST, )q(t —to—nT,),

n=-—oo

where {C(nT,)} and {S(nT,)} are two independent zero-mean binary sequences
with values 1. Since C(¢) and S (¢) are each PAM signals, then from (12.143) we
have

S&(F) = % O +o/2)0™ (f —OL/2).§c°‘(f )e—iTt(XTce-—iZTCOLtO
and
S$(fF) = % Q(f +2)Q* (f —w2)SL(f e~ 2™,

where .S~’C°°(f )= S’sa(f ); since C(¢) and S(¢) are independent and have zero mean
values, then

Ss¢(f)=S&()=0.

Substituting these results into (12.80) with Z =C and W = =S yields the cyclic
spectrum for this staggered QPSK signal:

SEF) = LISAF +fo) + SE&F —fo) + SF +Fo) + S&F ~f ol
4

+ 188y = 87 o e+ LisE T ) - 857 o e
1 . i o
= AT o +f0+0€/2)Q (f+f0—0t/2)Séx(f +f0)[l+e znocTc]e i2mat
e
1 . i y y
+ 2 QU ~Fot@2)Q" (f ~F o= DS ~f o)1 +e e
(¢4
1 * ~ a+2f,
=T OQf +f+a/2)Q (f =fo—W2)Sc  (f)
c
% [1— e_in(a+2fO)Tc]e—i @nrlo+2f ot o+200)
1 * 5 0-2f
= 2 ~foto2)0 f +Fo—/2Se 7 %f)
c

x [1— e—iﬂ?(a—2fo)Tc]e—i(2ﬂ7[0€‘2fo]to—2¢o).

Therefore, for stationary {C (nT,)} and {S(nT,)}, the cyclic spectrum for this
SQPSK signal is identical to that of BPSK for o0 = 22f 5+ k/T,., k = odd integers,
and for o0 = k/T,, k = even integers, and is zero for all other values of ol

b) Since the MSK signal has an identical form to that of the SQPSK signal, except for

the pulse shape ¢, then the formula derived in part a, with an appropriate replace-
ment for the pulse transform Q, applies to MSK. Consequently, the values of o for
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which the spectral correlation is non-zero are identical to those for the SQPSK
signal.

12.18 Since, from (12.175b), we have the formula
A, = [X (@ = w)e 2 EOTy ()ay

for the HSR representors, then (with o = £/T) the means are given by

oo

my = E{A, () = [ my(t — u)e 22Ty (1)

oo

=3 m J 12ROD Ty, (1)
(0]

—00

= 3 m Wyr@nlo—p/ Te 2 =20 = T,
o

which is independent of f. Also (again using o =k/T), the cross-correlations are
given by

Rpq (1 +7/2, 1 =12) = E (A, (t +T2)As(t ~112)}

_ H Ry(t +1/2—u, t =12y )e i TP =T g=iTp+q)VT 4 i2n(pu=qv)IT

—o0

X wr (u)wr (v )dudv

R)?(’C+v _u)eina(2t—u—v)e—-iZTc(p—q)t/Te—z'n(p+q)r/Tei2‘n:(pu—qv)/T

==

=X
X wr(u)wr (v)dudy,

- ZJSXa(f)eiZth‘te—in(p+q)‘t/2fj WT(M)WT(V)
Ol —oo —o0

e DG
Xeizn(—f—a/2+p/r)ue-i2n(~f+aj2+q/r)vdudvdfe’Zn(a T !

j o o
= 2 [SEO W i1+ %= BoW (= 2= Lyaf
“) 2T 2T
: =LY
XezZn(oc T )te—in(p+q)‘t/T
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(-2t .
W (f - pZTq )df

= _[S)éwq)/T(f)eiz

(since the product of rectangles is non-zero only when o = (p —g)/T), which is
independent of ¢. Therefore, the HSR representors {A,(¢)} are jointly stationary.

12.19 @) Substituting (12.178a) into (12.179b) yields
TR
RET(r —u) = 1 J‘ 3 R, — ) 2RI~ qu)IT gi2np~q )V T

T—T/2 p,q=—o°

X e—i21|:nv/Tdve—i‘n:n (t+u)T

- i R (¢t —u)ei2@t-au)T SIN[AP ~g =1)] —izn@+uyr
pgmen np —q-n)

=3 Rp(p_,,)(l‘ —u )eiz“P(t—u)/Te—inn(t—-u)/T,
p=—o°

which is the desired result (12.180) with T =1¢ — u.

b) Fourier transforming (12.180) immediately yields the result (12.181), which relates
the cyclic spectra to the cross-spectra of the HSR representors.

¢) Continuing from the solution to exercise 12.18, we have

= ion(f —2ELyr +
Rog® = [ SE=0T(f)e 2T Wi — L

—co

- ’ + "N ’ ’ : ’
= [sgm0TG + EELw 60 g (using £ = f - (0 +q)2D).

Fourier transforming both sides yields

Sy () = SE~TGE + LW 7 (),

which is the desired result (12.184) relating the cross-spectra of the HSR represen-
tors to the cyclic spectra.

12.20 Draw a picture showing how (12.187a) interleaves the subsequences from (12.187b).

12.21 For the TSR representors, we have the means

E{Z,(m)} = E{X(mP +p)} = mx(mP +p) =my(p)
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for all m since my (") has period P. Thus, the means are constants. The cross-
correlations of Z,(m) and Z, (m) are given by

Rpg(m+j, m)=E(Z,(m+j)Z,(m)} = E{X(mP +jP +p)X (mP +q)}
=Ry(mP +jP +p, mP +q) = Ry GP +p, q)

for all m since RX(-,-) is jointly periodic with period P. Therefore, the TSR
representors {Z,(m)} are jointly stationary (in the wide sense) if X(t) is cyclo-
stationary with period P (in the wide sense).

12.22 Substituting (12.196) into (12.197) and the result into (12.198) yields

oo

E{X@)} = fx—;;( lim -27\,1—1 u[x—x(t —nT)])dx
R
.
= lim 2N+ EN _[Qxﬁ[x — x(t —nT)]dx
N
=N e 2 S

which is the desired result (12.199).

12.23 Substituting (12.199) into (12.200) yields

T/2
1 J _
i oc i2mou
" Z x(t+nT)e dt
“T12 N—"” 2N | o
(N+1/2)T
. 1 n,—i2mot’ .0
[ e dt’,  o=kIT
Now QN +DT 2107
1 ZI2
= lim - [ x@)e 2™d, =k
Z=yem L0 208

which agrees with (12.191). Thus, the cyclic mean can be obtained directly from the
data as in (12.191) or indirectly from the periodic mean of the data, as in (12.200).

12.24 To relate the correlations of C(¢) and S(¢) to the cyclic autocorrelations of X (¢), we
proceed as follows. we have

Re>T) =<E{CE+U2)C(t —T/2)}>
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= <%E {X @ +7/2)X (t —1/2) }[cos(2mait ) + cos(marT)]>
= %<RX (t +T2, t —T2)e %> + %<RX (t +7/2, t —T/2)e 2 >
+ %<RX (t +7/2, t —1/2)>cos(roT)

= %[RX"(T) +Ry%(1)] + %<RX >(T)cos(moLT)

= %Re{R,?‘(r)} + %<RX >(T)cos(ToT)
and, similarly,
<R¢>(1) = —-;—RC{RXO‘(T)} + %<RX >(T)cos(ToT).
Therefore,
Re{R(T)} = <R>(T) — <Rg>(T),
which is the desired result (12.304a). Likewise, since

<Rps>(M) = <E {C(t +T/2)S (¢ —1/2)}>

= <%E (X (t +T/2)X (t —/2)}[sin(2mout ) — sin(mort)]>
= 4il,<RX (t +7/2, t —T/2)e " > — 4ii<RX (t +1/2, t —T/2)e 2>
— <Ry (t +7/2, t —T/2)>sin(TOLT)
= 'Z:,T[RX_ T —R¥(T)] — %<RX>(1:)sin(7tom:)
= —%Im{RX“(T)} - %<RX >(T)sin(moT)
and
Rge>(T) = <Rpg>(~T) = ——;—Im{RX“(T)} % %<RX S(D)sin(ro),

then
Im{Ry(1)} = —[<R s >(T) +<Rgc >(T)],
which is the desired result (12.304b).

12.25 The autocorrelation of the phase-randomized process Y (¢) is given by

Ry(t +7/2, t =1/2) = E{Y (¢ +T2)Y (t =1/2)} = E {X (t +72+©O)X (t —1/2+©)}
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J. E{X(@+12+0)X(¢ -12+0)}fo(0)d0  (using (2.45))

—o0

]

[ Ryt +72+6, 1 =112+ 0)f 5(0)d

_ JZRXO‘(t)ei2“°‘<‘+9)f®(9)d9

—oo O

Y RET(0)e!?™!/T Og(2mk/T) (since o= k/T only).

k=—c0

Thus, for Y () to be WSS, a sufficient condition is that
Qo(2rk/T) =0 for all integers k # 0.

This condition is equivalent to
>, ©gum/TY(t —m/T) =08(t), —oo<t < oo
m=-—oo

which has the Fourier transform

1= E <I>@(2nm/T)e_i27w’”/T - J- Z eiZnem/Te—-iZTWm/Tf@(e)de
m=—oo

= —c0 1 =—00

= [T 3 8(v=0-nT)f o@dO =T 3 fo(v—nT), —o<v <o,

—o0 N=—00 n=—co

which is equivalent to (12.305).

12.26 a) Let U(t) and V (¢) be defined as in (12.11); for a zero-mean process X (¢), we obtain
from (2.25) the correlation coefficient (with time-averaging incorporated in the auto-
correlations and cross-correlation)

_ <E{U@+TU2V" (¢ =1/2)}>
P [<E{U@ +12)U* (t —U2)}><E {V (¢ +T2)V* (¢ —1/2)}>] 12
R(T) R (T)

= = , for all oo and T.
[<Ry>(0)<Ry>(0)]2  <Rx>(0)

b) Integrating (12.34) with respect to f and then applying the Cauchy-Schwarz
inequality (11.186) yields

[ 182 )12df < [<Sy>(f +02)<Sy>(f —w2rdf < [ I1<Sy>(f)12df.

—oo
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Applying Parseval’s relation to this inequality yields the desired inequality (12.307).

12.27 a) Since S(¢) and N(¢) in the sensor-array model (12.210) are not correlated, then
applying the definition of the cyclic correlation to (12.210) yields

RE(T) = <E {X(t +T/2)XT(t —1/2)} e 72704 >
=<[E{S+T2)S* ¢t =12)}pp’ + E (N +T/2)N'(t —1/2)}
+PE (S +TU2N (¢t =1/2)} + E (N +1/2)S" (r —1/2)}p'le 7% >
=R (@pp’ + RE(),
as desired.

b) Since N(r) and M(¢) exhibit no cyclostationarity with cycle frequency o and neither
is correlated with the other or with S (z), then the cyclic cross-correlation matrix for
X(t) and Y (¢) in (12.210) ad (12.215) reduces as follows:

Ry (1) = <E {X(t +2)Y (¢ —=1/2)}e 2™ >
=<[E{S(t+US" (t —1/2)}0" pp’ + PE {S (¢ + UM (¢ —1/2)}
+ E{N( +12)S™ (¢ =v2)}0"p’ + E (NG +U2)M'(z - /2)}Je 2% >
= R()0" pp’.
¢) When (12.212a) is valid, we have
R{(t) = R{H(T)pO)P’ ()

and
kf‘,lRXf (1) = <E (X't +12)X(t —1/2)}e 72" > = R&(T)p’(B)p(®).
Therfore,
DJQR;%@) ki_lRX‘: @'dr= DJO IR$*(%)%d < [p'(©)p(®)]" p(B)p’ (B),
as desired.

12.28 We can express X (¢) as in (12.301a):
X(t) = 28 1)e' 5 + 15* (1)e W
2 2
Then, it follows from (12.302b) and (12.302c) that
SHF) =453 +fou(f +fg—lal2)

S& (F) = 485 S+ £ §-If .
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Therefore, for o = 2f« = 2(f y—f¢) we have (with reference to (12.169))

2fo=2f¢ ’ ’ ’
SE() =4Sy’ U+ fuf +F§=1fo-f 3N =0 —> RE=0
(since o = 2f ; — 2f ¢ is not a cycle frequency for the BPSK signal X (¢)) and

2
S& (F) =487

(since o = 2f is a cycle frequency for the BPSK signal X (¢)). Also, for o= 1/T, we
have

Uu(fo-Ifh 20 =—> RZ 20

SEF) =4Sy e (F +f O (F +F & - 2; )20 == R&20
C

(since o = 1/T, is a cycle frequency of X (¢)) and

(Fu(

o+ UT,

Ss%*(f)=45x2f +f{-1f)=0 == RZ =0

2T,

(since o = 2f § + 1/T, is not a cycle frequency of X (¢)).

12.29 The generalized eigenvalues A for the two matrices R and S are the solutions to the
equation

IR-ASI=0 or ISIR-AI=0,
from which it follows that
(@a-A)d-2)—bc =0
or

2 2 2
= %(a +d * [(a +d)*+4bc —4ad]"?) = ";’d +[£ Zd = "z—d +bc]”,

which is the desired result (12.310). The corresponding generalized eigenvectors
v =[v; v,]7 are the solutions to the homogeneous equation (12.308), which is
equivalent to

(S7'R — A)v =0,
which reduces to
(@=AMvi+bvy=0 and cv;+(d-Av, =0,
from which it follows that
= b aud = 28 b .
b2 + (h—a )32 2 b b2+ (h—a)]l2
This is the desired result (12.311).

Vi
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12.30 The PAM signal is given by (12.134). For a white amplitude sequence {A(mT)}, we

12.31

have RA (GT)=R 4(0)d; and the corresponding cyclic spectrum for the PAM signal is
given by (12.143) with §(f) =0 for o # k/T and S4(f) =R, (0) for o.=k/T.
Therefore, inverse-Fourier transforming (12.143) yields the cyclic autocorrelation for
the PAM signal:

RSG(I) = J.SSa(f )e"znftdf = %R‘A (O)rqa(’t)e_‘nnwﬁ

—oo

= %1% ,(0) j gt +T2)q (t —T/2)e 2! dre ™ M0

sin(ral[T —1t1]) i 2t

- ﬁ" © noT

. o=k/T,

where
A 1, ltklT2
IWD=N 0, pi>TR2
Therefore, IRZ(t)| peaks at T=+£T/2 when o = 1/T. For a QPSK signal, since the
sequence {C (mT,)} is white, then RZ(T,) = RF(0)8;. Therefore, from (12.174) and

the preceding result for the PAM signal (with T =T,), we obtain the cyclic auto-
correlation for the QPSK signal

RET) = —;—RC O X()cos@rf r)e ™ 2"
C

~ sin(ro[T, — It ;
=Rc(0) : n[oc; L cos(2nf gD)e 2T, o= k/T,.

c

When o, = /T, and f (T, = integer, |IR$*(t)| peaks at T =%T,/2.

It follows directly from the two-sensor model (12.223) and the assumption that S(7) is
not correlated with N (¢) and M (¢) that the cyclic autocorrelation is given by

R&T) = <E {X (¢ + U)X (t —1/2)}e 2™ > = R¥(1) + Ry (1)
and the cyclic cross-correlation is given by
R (T) = <E {Y (t +T2)X (t —1/2)}e ™ 2" >
= <[E{S(t +12-1)S (t —U2)} + E {M (¢ +U2N (t —T/2)}]e 7 F* >
= <Ry (1 —Ty/2+ [T~ Tgl/2, t—To/2—[T—To/2)e 2™ > + Ry (T)
= <Ry (t'+[T-Tol/2, t' —[T—Tol/2)e 2 Se ™% 4 Ri% (1)

= R&(t—Tp)e ™ + Ry (D).
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Fourier transforming Ry%(t) and Ry*(t) yields the corresponding auto and cross
spectral correlation functions (12.224a) and (12.224b).

12.32 a)

b)

c)

For the linear combiner, expanding (12.231) with (12.230) substituted in yields
TAMSE = <E {IS () — gX(t)*}>
=<E{IS@)?}> + g<E (X)X (1)}>¢"
~<E{SOX'(1))>g - g<E (X1)S™ (1))>
= <Rs>+ g<Ry>g — <RIx>g" — g<Riy>.
Let g be represented by its real and imaginary parts: g =g, + i g;. Differentiating

the TAMSE with respect to the elements of g, and g;, and equating the derivatives
to zero yields (in vector form)

d

og
5-ag—TAMSE = —2Im{g<Rg>} + 2Im{<R¥x>} = 0,

i
which is equivalent to the orthogonality condition (12.312) and for which g, in
(12.232) is the solution.

It follows from the model (12.210) (and the assumption that S (¢) and N(z) are not
correlated) that <RSTX> = <RS>(O)pT, which upon substitution into (12.232) yields
the simplification (12.235).

From the model (12.210) (and the assumption that S (¢) and N(t) are not correlated),
we have

R x(1) = <E {X;(t + U)X (t - 12)}e ">

TAMSE = 2Re{g<Rx>} — 2Re{<RIx>} =0

r

=<[E{S@E+U2)S"(t —u2)}p;p" +E{SE+T2)N (t —1/2)}p;
+ E{N;(t +12)S"(t —t2)}p" + E{N;(t +U2)N" (t =1/2)}]e 2" >

=R Mp;p" + 0 + 0+ RY N(D).
Substituting R}?; x(T) into (12.237) yields (12.238). Furthermore, for N(¢) exhibiting
no cyclostationarity at cycle frequency o, (12.238) reduces to

<Rgy> = RHAT)p;p* e ™
and, as shown in part b,
<Rgx> = <Rg>(0)p’.

Therefore, the solution (12.232) to the orthogonal condition (12.312), with S(¢)
replaced by S(t), becomes
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g« = <RI ><Ry>7! = RF(T)p;e ™ p" <Ry>"!
- %pje““M RL><R ) =ag,
(where a is defined in (12.241)), as desired.

d) Since, from (12.230), (12.236), and (12.237), we have

12.33 a)

Rgs> = <E (S§()S™ (1)}> = <E {gX(0)X](t +D)}e! 2™ >
= gRYx()" e ™ = g <R5y>,
Rg>=<E{S1)S" (1)}> =g<Rg>g,
and
<Rg>=<E (§(1)S" (1)}> = <Ry >,
then the squared correlation coefficient (12.243) is given by
|<R¢s> I lg<Rjiy> I

Rg><Rs> <Ry >g<Ry>g'

[P =

It follows from the hint that this quadratic form is maximized by
g =c<RL><Ry>"' =cg: = cag,

where ¢ is an arbitrary nonzero constant.

For the pair of linear combiners, since
S@)=gX(@) and S(t)=KkY(t)e 2™,
then
Re>=E{S1S (1)}> = <gE (XY (1)} ' > = g [REI'K,
Rg>=<E{$()S (1)}>=g<Ry>g',
and
<Rs>=<E{S(1)S" (1)}> = k<Ry>k'.

Substituting these results into the definition of the correlation coefficient magnitude
(12.243) yields

| <Rgs> I | g [Rfx] 'K/
<R¢><R:>  g<Ry>g k<Ry>k'’

Ip? =

which reduces to the desired result (12.245) when the optimum steering vector

g = cRL <Ry>"! = ckR¥x <Ry>"!
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is substituted in. (Notice the cancellation of the numerator by one of the factors in
the denominator, and compare this with the hint.)

b) Let
vi =k<Ry>"2 and M =<Ry>""2R% <Ry>"! [R¥]T [<Ry>"127".
Then |p|2 in (12.245) can be reexpressed in the Rayleigh quotient form (12.313).
¢) From (12.314)-(12.315), we obtain (using vlfvj = 8;;)

7(_ n 1_ n 9
viv= ¥ (@ v)(a;v;) = X a5
i,j=1 i=1

n n n n
VTMV = Z ((Zivi)f Z lelvf 2 (ajvj) = Z 7\.1- [ai |2,
i=1 I=1 Jj=1 i=1

and, therefore,

n
Let us use the notation Y, |a; |>=A; then
i=1

2 2 2 2
a a a,_ a
_ Ifil A+ IZI Ayt |nA1| A, + lzl A,
la,)? las)® la, I
=\ - n -2y - 1 A=Ay) = = ;; A —=2,)
<M (since Ay 2 A, 2+ - 2A,)
with equality if and only if a;#0 and a,=a3;=-'-=a, =0. Thus, Q is
maximum when {a;} = {a, 0, - - -, 0} for any a; # 0.

12.34 Since, from (12.244) and (12.250), we have
S'(t) = U(t)e—iZnat ,
then
<Rgs>=<E{S(t)S"(1)}> = <E{U®)S™ (t)}e 2™ >" = <R >"
and
<Rg>=<Ry>.
Therefore, from (12.243) we obtain

Ch. 12: Cyclostationary Processes



The Random Processes Tutor e 235

o
| <Rgs> | IR

|p| = = ,
[<R§><R§>]1’2 [<RS~><RU>]”2

which is the desired result (12.249).
12.35 The solution is obtained directly by following the hint.

12.36 To optimize the spectral line regenerator, we proceed as follows.

a) Substituting (12.265) into (12.266) and interchanging the order of the double integral
and the time-averaging operation yields the desired result (12.318), since

Ry (t—u, t—v)e 2> = R (u —v)e  TUH+Y),

b) When S(¢) is absent, then X (¢#) consists of only stationary WGN N (¢) , and it
follows that

Ry(t) =E{Y(+7)Y (1)}

=jﬁfk(u, V)W, 2)E (N(t +T—1)N (t +T=vIN(t —=w)N (t —2)}dudvdwds
=N§f_ﬁj kQu, vk, 2)[8( —u)d —w) + 8T +w —u)d(T+z —v)

+ 8(t+z —u)d(T+w —v)]dudvdwdz
= N&[]‘ok(u, wydul + ZNOZE[k(r+w, T+2)k(w, 2)dwdz

= N& [ J k(u, u)du ]2 + ZN(%J-J‘IK(H, V)lzeizm(u“’)dudv,

where the convolution theorem for the two-dimensional Fourier transform has been
used in the last step. It follows that

Sy(0) = [ Ry(me 2%

—o0o

= Nol [k, wdu]’8(0) + 2v¢ [[ 1K @, v)28(c—p-+v)dpdv

= 2N [ 1K (u, p-o)Pdp

—o0
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= [ IK(f +o/2, f ~2)lPdf, o #0,

—o0

which is the desired result (12.270).
¢) By using the Cauchy-Schwarz inequality, we obtain from (12.267)

Pe = | [K(f +0u2, f —0u2)S(F )df 2

< [IK(f +ou2, f —au2)df [ IS(r)1%df

with equality if and only if (12.272) holds. Therefore, when K (f +0/2, f —0/2) is
given by (12.272), the SNR in (12.271) is maximized.

d) When (12.272) holds, we have

P = lc [ S¢S df 1P = le P [ 152 ) Pdf |

(since S¥(f) = S&*(f) for o # 0) and
Sy(o) =2N¢ e IZT IS ) 12df.
Substituting these results into (12.271) yields the maximum SNR (12.273).
12.37 a) For the spectral line regenerator, by using (12.264) for Y (), we obtain
Z(t)= Th(w)Y(t —w)dw

= J” hwW)k(u, v)X(@t —w—u)X({t —w —v)dudvdw

[ [ how)(s —w, r =w)X (t =5)X (¢ = )dw Jdsdr

I
o= s

J

where & ’(-,-) is given by (12.319a). Double Fourier transforming the kernel & (-, )
yields

k’(s, X —s)X (@ —r)dsdr,

K, v) = [[ kG, v)e 20 ydy

—oo
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= J-h(s) H k(u—s,v—s)e ZM—audy ds

= KW, V) [ h(s)e 2™V ds = K (u, VIH (=),

—oo

which is the desired result (12.319b). For an ideal bandpass filter with center
frequency o and bandwidth B — 0, we have the transfer function

1, p-v=a
Hlu-v) —
=) {Q L—=v#aq,
from which (12.274a) follows. '

b) Since H(f) is centered at f = o and has unity area and a bandwidth of B, then as
B — 0, we have

H() — &f o),
in which case (12.319b) becomes (12.274b).
¢) Substituting (12.272) into (12.274b) yields

K, v) = cS&( ”42”’ ) S(L—Vv—0) = cSEV+ %)* S(L—v—0).

Inverse Fourier transforming this function yields

k'(u, - ”‘ K, v)eizn(“"'w)dudv — cjSSa(v+a/2)*ei2n(u—v)vdvei2nom

—co —0c0

- CRSa(u _v)*eina(u+v)’

which is the desired result (12.320). Substituting (12.320) (with ¢ = I/N OZW) into
(12.264) (with limits of integration reduced to +W/2) yields

wi2
Y(e)= i [[ R —v)* ™ @)X (¢ — )X (¢ v )dudy
orr -wi2
| w W-Ith2
=——[Re®W" | X(+o+uX(+o-u2)e ™ dodr
NoW Sy w2

[ RE@* R, Dy drei 2

—oco

_Ng

= # J.SS“(f PG, Fpdfe ™ (by Parseval’s relation),

Q0 —oo

which is the desired result (12.275) for the single-cycle detector.
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12.38 @) From (12.278), we obtain
E{§0XM)) = ofho(t, w)E (X )X (v)}du = Tho(t, )Ry (u, v )du
and - -
E{S@X )} =Rex (., v).

Substituting these equations into (12.280) yields the desired result (12.281) for the
optimum time-variant filter.

b) From (12.279), we obtain
TAMSE = <E (IS () =S 0)1S (1)}> - <E {[S@) =S )1S ()}>

=<E{S@)-SOIS®) = [ holt, wE (IS ) =S ©)1X @)} du>
=<E{[S®)-S®1S()}> (using (12.280))

= <E{8%(1)} - E{S@)S®)}>,
which is (12.322). Substituting (12.278) now yields

TAMSE i = <Rg (¢, 1) = [ ho(t, w)E {S ()X (u))du>

—oo

= <Rs(t, 1) = [ holt, )Ry (¢, w)du>,

which is the desired optimum-performance formula (12.282).

12.39 g) Substituting (12.283a) and (12.4) into the right-hand side of (12.281) yields

Rey(t,v) =3, ,[g{s(f —u)RH(v —u)e! 2 im0 1) gy,
B

,0l —oco
=3 JgB(w)RXa(v —t +w)e! TBU-W)inaly +1=W)gy,  (using t — u = w).
B,ot —oo

The cyclic cross-correlation of S(¢) and X (¢) is given by

R (T) = <Ry (z +1/2, z —T/2)e 27>

- Z J.gB(W)Rxa(T—W) <ei2n(a+B—y)z> e—irc(2[3+a)wdweinﬂ‘r
B,(l —00
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— ] ZfgB(W)R)Q,_B(T___W)eln(B‘F'Y)(T—‘W)dwe—-[WYt,
B —o

which can be reexpressed as

R (Dei™* = 3. g4(1) @ [RYPme ™07 |,
B

which is the desired design equation (12.284).

Substituting (12.283a) and the Fourier series expansion of Rgy (¢, u) into (12.282)
yields

TAMSE ;= <R (2, 1)> — <j Y g =)ot BPPERE [t iy Yo tTN+E) s,

—00 G,B

- RSO(O) —< J. Z gB(W )RS(}I((W )e—in(2B+0L)w dwei2n([3+a)t>
—oc0 (x’ﬁ

©o

- RSO(O) _ J- Z gB(W)RS(}((W)e—in(25+a)wdw<ei2n(B+a)t>

—o0 a’B

=RI(0) - ZB: j gpWIRFW)e ™ dw  (using <!> = 5, g
=RY0) - ¥ [ epRE (@) e ™Pidr,
B —00

which is the desired optimum-performance formula (12.285).

b) Fourier transforming both sides of (12.284) and using the convolution theorem
yields the frequency-domain design equation (12.286) immediately. Applying
Parseval’s relation to (12.285) yields immediately the frequency-domain optimum-
performance formula (12.288):

TAMSE wia = [ SO0)df — 2 [ G )& ~Br2)" af
—oo B —oo

= [18¢) - 3 G )SE(F —Br2) 1df.
—oo B

12.40 For the system-identification problem, since N (¢) and M (t) are statistically indepen-
dent of X (¢) and Y (¢) and can be assumed to have zero mean values, then

Sy (f) = Sxy(f) + Sy (F)
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S (f) = S¢(f ) + SN ().
Hence, it follows that

P S +as2) + Sy (f +0i2)  H(F) + S (f +U2) IS +02)
COSHF A2+ SHF +a2) 1+ SHF o2 ISAF a2y

If N(¢) and M(t) exhibit no cyclostationarity at o = 0, we then obtain the perfect
transfer function approximation:

H(f) + 0IS(f +0/2)
1+ 0/S¢(f +0/2)

H(f) = H():;

whereas for o = 0, we have the imperfect approximation
H() + SIS
L+ SN IS

H(f)= H(f).

12.41 We obtain the cyclic autocorrelation for the product Z () of time-series X (t) and Y (¢)
by definition

RE() = <E{Z(t +T2)Z (t —T/2)}e 2>
=<E [X(t +U2)X (t —U)}E (Y (t +T)Y (¢ —T/2)}e 2>
=<Ry(t +7/2, t —T2)Ry(t +7/2, t —T/2)e ~i2mot s,
Substituting (12.4) now yields

RA (1) =<3, Rl\ﬁ(’c)ei 2nBt2 RJ(t)e 2t g=i2mot 5,
B T
= 3 RE@RJ@)<e P15 = 3 RAORS ().
By B

Fourier transforming R(t) and applying the time-frequency dual of the convolution
theorem yields the desired result (12.323):

SHF) =3 SBH® s By =3 [sPwsg B —vidv
B B —eo

=3 [ s8-8 -vsPwdv
[3 —oo

(using the fact that A® B = B ® A for both discrete and continuous convolution).
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Minimum-Mean-Squared-Error Estimation

13.1 All vectors X = {0y, Oy, 03} that lie on a line through the origin of 3-dimensional
Euclidean space can be expressed as X = Y, where Y is any vector on this line, and 3
is an appropriate scalar. It follows that the set of such vectors on a line is a linear space
since every linear combination of every pair of vectors X; and X, on this line is another
vector on this line:

OX | + 17X, = oByY +1B,Y = (o + 1B)Y 2 BsY =X
However, if the line does not pass through the origin, then all vectors on the line are of
the form
X=pY +2

for fixed vectors Y and Z, where Z # 0 is orthogonal to Y (Z can be thought of as
giving the magnitude and direction of the line segment that is perpendicular to the line of
interest and connects the origin to this line. It follows that the set of vectors on this line
is not closed under linear combination

GX1 C 'YXZ = (GB1+'YB2)Y e (G+'Y)Z # B3Y +7Z
(the inequality holds for all ¢ and y except the special case where ¢ + v = 1). Thus, lines
that do not pass through the origin are not linear spaces.

Similar arguments can be construed to verify that all planes through the origin are linear
spaces, and no plane that does not pass through the origin is a linear space.

To prove that no set of vectors other than those that form lines and planes can be a
linear subspace of 3 dimensional Euclidean space requires more work. For example, this
can be done by contradiction; that is, by proving that if a set of vectors is closed under
linear combination, then it must be either a line or plane through the origin (or all of 3
dimensional Euclidean space).

13.2 Let the basis vectors in the given subspace be
Y, ={1,-1,0} and Y,={0,1,1}.
Then the estimate can be expressed as
X =hY{+hy¥y={hy, hy—hy, hy).
The solution to (13.19a) for the optimum 2-tuple of scalars H = [h{) hg 1
by (using X = {0y, 0, 0i3})

is given
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RO @y @pyp | &, ¥y 2 1| oy-oy
hd ) ¥, Yy) (YY) X, Yy) T2 0y +0;
2/3 173 || oy—0y ! 20, — 0y + 03
B 173 2/3 || o404 ] O+ 0+ 205
Therefore,
204 — 0+ 03
}20=h10Y1+h§Y2=% —0i;+ 20+ 03
o+ 0, +204

13.3 Using the inner product definition (13.8c) with T = [0, 1] yields
1

1
X,Y)= iX(t Y (t)dt = g cos(2mt )sin(2mt )t = % sin2(27ct)1 . =0.

Therefore, X and Y are orthogonal for 7 = [0, 1]. However, if T = [a, b], then

*X,Y)= a[X(t)Y(t)dt . Zlgsinz(Zm):l;

_ sin’@nb) _ sin’(2ma) _
4in 4w

L[COS(41ta) — cos(4mh)] =0
8m

if and only if » — a = k/2 for some Integer k.

13.4 Let the basis functions Y ;(¢) and Y ,(¢) be
Y (@)=cos(t) and Y,(t)=sin().
Then, the estimate (orthogonal projection) can be expressed as
X(@)=0Y,(t) +Y¥ () for t € [0, =l

Since the function to be estimated is given by

1, 0Lt<rm
X@)= 0, otherwise ,

then the inner products of interest in the equation (13.19a) are given by

T T
X, ¥ =[cost)dr =0, (X, ¥y =] sin@)dr =2
0 0

Ch. 13: Minimum-Mean-Squared-Error Estimation



The Random Processes Tutor e 243
T T
¥, Yy = j cos?(t)dt =m/2, (Y5, Y, = j sin®(¢)dt = m/2
0 0

4
(Y1, ¥5) = (T3, Y1) = [ cos(t)sin()de = 0.
0
Substituting these results into (13.19a) yields
w2 0 || AP 0
0 m2 h2° 2

which has the solution

hY =c=0 and &

No

Therefore, the orthogonal projection of X (¢) is

X olt) = cocos(t) + 'yosin(t) = %sin(t).

13.5 To verify Woodbury’s identity, we multiply both sides of (13.266) by [A + bc] to obtain

-1 -1 -1 _1 1
T = phoabeffat = DSy BEET eyt BEATHEGAT
1+cAb 1+cAlb 1+cAb
=1 “l _1
=1 _b—CA—_—CA_Ib e bl I  (since cA™'b is a scalar),
1+cAb 1+cAb

which is indeed an identity.

13.6 To verify (13.45b), we multiply both sides of (13.39) by —;—Y(l) to obtain

Ryl -nyyT(ORy ' -1)Y ()
(- +YTOR A -DY ()
_ 1 R-Dr@Oe-np+o R -1Y ()
-1 -1+ YTORSII-1Y()  d-1)+YTOR;\(-1)Y ()’
which is the desired result (13.45b).

LRI OY @) = R - DY) -

13.7 Since, from (13.33) and (13.34), we have (using definitions (13.24) and (13.36))

_ l
Ry =13 xY)=11r() Y@ YO I = w7
n=1
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_ o B
advs
1

_ l "
Ry (1) -%z Yo m=trmre--rol 1| =,

LYT ()
then substituting the above results into (13.32) yields (using the definition (13.268))

Hol) =Ry \(OHR (1) = [—MTM]‘ MTX My,

which is (13.267), as desired.

13.8 Since
E{[X+Y?) =E{X? +2E{XY} + E{Y?),
then we have
E{XY}=0 < E{[X+Y]*})=E{X?} +E{Y?},
which (using definitions (13.8d) and (13.9d)) is (13.12), as desired. We also have
E{X+Y)+ X-Y)}} =E{X?+2XY + Y%+ X?- 2XY + Y2} = 2E (X?} + 2E (Y?},

which (using definitions (13.8d) and (13.9d)) is (13.13), as desired. Furthermore, we
have

E{X-Y?)=E{X2-2XY + Y%} =E{X?} + E{Y?} - 2E (XY},

which (using definitions (13.8d), (13.9d) and (13.10)) is (13.14), as desired. Finally, we
have proved in exercise 2.14 that

E{xy}<\E{X2}E{r?},
which (using definition (13.8d) and (13.9d)) is (13.15), as desired.

13.9 a) The MSE can be expressed as
MSE =E{(X -X)?} = E{[X -Xo) + Ko-X)}
= E{(X -X¢?} + 2E{(X X)X o-X)) + E {(Ko—-X)?).
b) Since X = g(¥) and Xy = go(Y) = E {X|Y}, then
E{X-Xpg(M)} =E{X-E{XIY}Dg(¥)} =0 forall g()
and, therefore,
E{X -Xp)(Xo—-X)} = E{(X —E{XIY })go(Y)} — E (X -E (XY })g (1)}
=0-0=0.
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Thus,
MSE = E{(X -Xo?} + E{(X,-X)?},
which is minimized with respect to X if and only if X =X o=E(XIY}.

13.10 (i) From the orthogonality condition, we have
E{X-X)Xo} =0 or E{XX,}=E{X2).
Therefore,
MSEq = E{(X -X()*} = E{(X X)X} - E{X XX}
=E{(X -XoX} = E(X?) - E {XX)
= E (X%} - E{X X)X, + XoXo)
=E (X% - E{X -XpXo} - E{X§} =E{(X?) - E{X5},
which verifies (13.66).
(ii) It follows from the orthogonality condition (13.72) that
MSE, = E {X?} - E (XX}

(as in (13.66)). Substituting (13.80) into (13.70) and the result into this expression
for MSE g yields

MSEq =Ry — E{XY"hy} =Ry — RIyRy'Ryy =Ry (1-p?),
where
_ R{yRy'Ryy

Ry

This is the desired result (13.83)-(13.84).
(iii) It follows from the orthogonality condition (13.88) that
MSE, = E {X?} - E (XX}
(as in (13.66)). Substituting (13.86) into this expressing yields
MSEy=Ry — "[E {XY (t)}ho(t)dt =Ry — !/RXY(t)ho(t)dt = Ry (1-p?),

where
1

2=
p Ry

[ Ryy @©ho(t)e,
|4

as desired.
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13.11 From the result of exercise 1.12d, we have

E(Xly}=PB"=y2%y +B-y—=B'=hey +fo
o o
where
o (LAY
ho=Y?, fo=l3—Ya7[3,
B=E{X}, p'=E{Y}, a=VVar{X}, o' =VWar(Y},
and
_CoviX, Y}
V=

IfB=E{X}=0and f’'=E{Y} =0, then f;=0.

13.12 (i) Substituting Z= hY + f, into the given orthogonality condition yields
E{Z-Z)WY+f)} =E{Z~-Z)Y}h - E{Z-Z)f
= (h[cg+mfl + myf — E{ZY Dh — (hymy +f —E{Z})f
=0 forall £, f.

Thus, the coefficients of 2 and f must be zero:

0 = h[cg+m#] + myfq — fyfw(x y)fy)dy (using Z = fyy(x1Y))

= hilog+mP1 + myf; - JYfYIX(y lx)f x (x)dy

—co

= hi[6Z+m@l + myf | - fxy(X)E (Y Ix}

and

O=hymy +f1—E(Z)=hymy + 1= | frip&)FyG)dy

=hymy + f1 - fx().
Solving these two equations for /4, and f yields

hy = ——(E (¥ lx} = my)fy ()
Oy

Fr=Lrioh 4 mp - BV e Imp)fyce).
Y
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Therefore, the optimum linear estimate is given by

z‘=h1Y+f1=fX(;)[(E{le}—mY)Y+o§+mY2—E{Y|x}mY]
Oy
E{YIx}-m
= fx @1 + —— ¥ —my)],
Y

which is the desired result (13.270).
(ii) Substituting (13.270) into (13.271) yields

oo

E(XIY) = [xfyy&V)dx

—oco

= [xfy@)ax + éfoX(x)[E{YIx}—mY]dx(Y—mY)
—ca Y —oo

=my + %[” Xfx ()fy)x O Ix)dxdy — mymy |(Y —my)
Y -—oo

Kxy
= my + -—Z(Y—my),
Oy
which is the desired result (13.272).

(iii) The generalized linear MMSE estimate of X based on the observation Y is given by
X =E{XIY}=he +fo
where h and f  satisfy the orthogonality condition
E{X-X)hY +f)}=0 forall h,f.
Substituting X = hoY + f into this equation leads to the pair of equations
ho(6g+mP) + fomy —E{XY} =0
homy + fo—mx =0,

which have the solution

_ Kxy B Kxy
0———2“ and fo—mX ——Zmy.
Oy Oy

It can be seen that this generalized MMSE estimate X is equivalent to the wide-
sense conditional mean E {X Y} .

(iv) If X and Y are jointly Gaussian, then we obtain from exercise 13.11 the conditional

mean
K K
E(XIY} =YY + B~ y-B’ = ¥ +my — —o-my
o o ()7 Oy
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Kxy
=my + —Z-(Y—my),
Oy

which is identical to the wide-sense conditional mean E {X Y }.

13.13 For zero-mean jointly Gaussian variables X and Y, we have E{X|Y} = hyY and
ho = Kyy/og. Therefore, the left-hand side of (13.275) is equal to

LAE{X-hoYPly} =E{X2ly} - 2hoE (XIy}y + hdy* = E{X?ly} - hy>,
whereas the right-hand side is equal to
R=E{X-hY’)=E{X*} -2E{XE{X|Y}}+E{(E{XIY})?*}
= E{X?} = 2h4E (XY} + h$E (Y?)
= E (X%} - 2K} /0f + K /of
= E{X?} - K}/of = o} — K/op.

However, since

oo

E{X2ly} = [x¥fyyGly)dx = of), + E Xy D? = 0F), + (hey )%

—co

then L = G}% Iy and, from exercise 1.12d (with X and Y interchanged), we have
L = o3, = 63(1-p? = 67 — Ky /07

Therefore, L = R, as desired. (Note: this certainly is not valid, in general, for non-
Gaussian variables.)

13.14 a) Substituting the estimate (13.95) into the orthogonality condition (13.94) yields
E{X —X'O)Y(v)} =E{XY(v)} - f how)E{Y )Y (v)}du =0 forallv € V
14

or, equivalently,

E{XY()) = [ h@)E{Y @)Y (v)}du  forall v € V,
Vv

which is the design equation (13.96), as desired.
b) Adding and subtracting X o in (13.93) and using (13.94)-(13.95) yields

MSE = E{(X -X)?} =E{(X -X;+X,-X)%)
=E{(X -Xp? +2E{(X -X)X;-X)} + E{(Xy-X)?}
= MSE 4 + A,

where
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ALE{Xy-X)*}) =0 ifandonlyif X =X,
~ Therefore, (13.95) and (13.96) do indeed minimize MSE.

13.15 @) Substituting (13.106)-(13.107) into (13.101) yields
[ ho(t =Ry (v —u)du = Ryy (¢ =v) forall veV,reT
v

or, equivalently, withT=¢ —v and w =¢ — u,

[ now)Ry(t—w)dw =Ryy() forall T,

—oco

which is (13.109), as desired.
b) Similarly, substituting (13.106)-(13.107) into (13.102) yields

MSEo(t) = Ry 0) — [ho(t —u)Ryy(t —u)du for te€T
Vv

=Ry (0) - [hg@Ryy(dT (=1 —u).

13.16 Replacing X (¢) with X'(¢) and A, u) with hg(t, u) in (13.99)-(13.101), and using
(13.105), we find that the optimum A (¢, u) is specified by

J.h(;(t, WE{(YW)Yw)ldu =E{X'(t)Y(v)} forall v,t € (=0, ). ™

Since X'(¢) = X (t)® g (¢), then by using (13.101), (13.105), and (*) we obtain

EX'OYM}=E{IX®)® g®OIY (v)} = jg(W)E {X@-w)Y(v)}dw

J-g(w)jho(t —w, u)E{Y ()Y (u)}dudw (using 13.101) and (13.105))

oo oo

= [[[ ot —w, urgow)dwE (Y @)Y (u))du

1l

[r§e, WEY Y @))du  (using (+)).

—oo

Therefore,

hit, w) = [hot—w, udgw)dw = hot, u)® g(t)

—oo
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for any g (7).

13,17 Since, from (13.112), we have

Sxy () S ()
then
1Sy (F)1?
Hyy(f)Hy x () = xr = Ip(f)I3

Sx(F)Sy (f)
where the fact that Syy (f ) = Syyx(f ) has been used.

13.18 (i) Using (13.126) and the fact that S (¢) and N (¢) are uncorrelated, we obtain
MSEo=E{[S®)-S@®)*} =E{[d(#)® S(t)+a(t)® N 1)}
=E{[d(®)® S@)I*} + E{la()® N(1)]*}
=[Rg(T)® 1y (V)] 10 + [Ry(®)® r,(T)] ;=¢ (using (9.45))

= [Rs@)rg()ar + [Ry()ra(0)dt

—oo

= _[SS(f)ID(f)lzdf + fSN(f)lA(f)Izdf (using Parseval’s relation)

—oo —oo

= MSE; + MSEy,

which is the desired result (13.130).
(ii) It follows from (13.127) that

hot)® gt)=d @)+ 8(@) Ap() and ho(t)=a(t).
Therefore, we can use (9.45) to obtain

E{[ho)® g()® SO)*} = E{[b()® S’} = [Rs(T)® 7, (D)] z—0

= [Ry)ry()dr = [Ss(F)B(IPAf = [Ss(FHIL+D(f)1df

and

E{[hg@)® N(@)I*} = E{[a()® N(1)I*} = [Ry(D) ® 1, (D] ;=g

= [Ry@yr,)dr = [ Sy(FIA)Paf.

—oo
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Substituting these results into the definition of SNR, yields the desired result
(13.131).

13.19 a) The filter that minimizes the MSE
E{[Y(t)-g@®)® X()]*)

has transfer function G (f) specified by the Wiener filter formula (13.112), with
X(¢) and Y (¢) interchanged:

Syx () _ Sxy(F)
Sx(f) Sx(f)
b) From the definition N(1) 2 Y () — g(+)® X (¢), we obtain
Ry (1) =Ry (1) — g(0) ® Rxy (1) — g (-1) @ Ryy (—1) + 1, (V) ® Ry (V).

G(f)=

Therefore, by Fourier transforming, we obtain
SN(F)=Sy(f) = G(F)Sxy (F) = G* (F)Sxy () + IG (F)12Sx ().
Substituting G (f ) specified by (13.132a) yields the desired result (13.133).

¢) As shown in part a, the transfer function specified by (13.132a) minimizes the mean
squared value of the error Y () — ?(t ).

13.20 (1) From (13.128)-(13.129), we see that r(f ) > 1 implies that
1
G

D) <1 and A()l =
Therefore, (13.130) yields
MSEg < ]‘,Ss(f)df = Rg(0)
and -
MSEy = ]?[SN(f)/IG(f)IZ]df.

Also, (13.131) yields

[ ssprar

SNR o= — :
[ 181G () P1df

*)

On the other hand, if »(f) < 1, then
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D) =1 and IAF) < 1.

Therefore,
MSEs = [ Ss(f)df =Rg(0)
and

MSEy < [ Sy(F)df =Ry (0).

—oo

Also, when 7 (f ) < 1, then it follows from (13.128) and (13.129) that
D(f)=r(f)-1
and
AF)=r(F)G).
Therefore, (13.131) yields
[ 1r )8 (Y

—oo

SNRO: = 4
Jur () Psy)11G () 1P1af

(ii) The input PSD SNR for model (13.119) is given by (13.123). At the output of any
filter with transfer function H (f ) # 0, we have

YO)®h)=h(t)® g(t)®@SE)+h()®N()
and, therefore, the output PSD SNR is
HEPIGE)Ss () 1G5 (f)
HE RSy (¢) S
which is identical to the input PSD SNR. In contrast to this, if G (f ) = G and
{so, If | <Bg < By
Ss(f) =

0, otherwise

Nog» If1<By
Sy(f) = 0, otherwise ,

then it follows directly from (13.268) and (13.131) that

By 1G5
SNR; = —>—2>-2

By N

1G o128
SNRo = —— > SNR;.

0
Ch. 13: Minimum-Mean-Squared-Error Estimation



The Random Processes Tutor ¢ 253

13.21 The PSD for Y (¢) is given by

Sy(F)=S8s(f)+Sy(f) =

ao ao
2 2 * 2 2
o + [2n(f +f )] o+ [2r(f —f o)l
and the cross PSD for S(¢) and Y (¢) is given by

Ssy(f)=S8s(f)=

Ny

aod 4 aol
o+ 2n(f +f ol o+ [2r(f —fI*

Since, from the hint, we have

Ss(f) =

ao.
o+ [2n(f —f I*
and Sg(f ) = Sg(—f), then (13.112) yields the optimum transfer function

f20

— Sy () _ Ss(f) ) ac(o? + [2n(f - f 1) !
0 Sy(F)  Ss(F)+Sy(f)  aoe? + 2n(f —f )DL + Ny
aOt/NO

= 5 20,
a/Ng+ o + [2n(f —f o)I? /

and Hy(f) = Hy(—f) (compare with (13.147)-(13.149)). The MSE, in (13.114) can be
approximated as follows:

o

MSEq= [ [Ss(f)—Ho(f YSay (F)1df
= [Ss(FII-Hof Ndf  (since Sgy (f) = Ss(F))

T Ss(F)Sw(f) - I
JSs(f)+S ok —_{cHo(f)SN(f)df

- J‘ aol aol

d
4,[ aa/Ng+ o2 + 2n(f —f )T ¥ aa/Ng+ o + [2n(f +fo)]2] /

ao

- |
= exp{Ithaa/Ny + o2 Jeos(2nf oD _,
\/aOL/NO+0L2 -

- a
\N1+aloN,
Note: o and B = o1 +a/oN o = 0[Rs(0)/MSE ] can be taken as measures of the

bandwidths of the signal and filter, respectively. Thus, as the normalized minimum
MSE increases, the bandwidth of the filter decreases, approaching that of the signal.
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13.22 Since
Ssy(F)=Ss(f) and Sy(f)=Ss(f)+ Sy(f),
then (13.112) reduces to

Ssy (F) _ Ss(F)
Sy(f)  Ss(f)+Sy(f)

and (13.114), therefore, reduces to

Hyf) =

MSEq = [ [Ss(F)~Ho(F)Ssr (N = [ S5 = Ho(f Jldf

__'[OSS(f)+SN(f)df ‘_LNoHo(f)df = Noh(0),

which is the desired result (13.278). (This is the method that is used in exercise 13.21.)

13.23 With #3 = 0 in example 2, we have

b
Hyf)= ———
ol @nf )* + p?
or
_ b b oy c_
Hol) = 2 = Grn)B-s)  B+s  B-s
where

2= BEDTA)], = 55

It follows from (13.154) that

_ (8
[Hys)]4 = B+
and, therefore,
A b/2B
H
o) B +i2nf

13.24 a) Since the time-averaged squared value of a sample path of a stationary random
process is a valid norm,

X1 = <X?(t)>12,
which induces the inner product

X, Y)=<X@)Y()>
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then we can employ the orthogonality condition
X-Xp,X)=0 forall XeM
to solve the minimization problem
min<[X (£)-X (t)1>>,
where

R@)= [h@)Y (@ -u)du. (*)

The orthogonality condition in this case becomes

0 = <[X(t)-X o)X (2)>

=<[xq) - jho(u)Y(r —u)du] J.h(v)Y(t —v)dy>

—o0

= [ho)[<X OV =v)>~ [ ho@)<V (¢ =u)Y (¢ —v)>du]dv,

—00

which is satisfied for all X (¢) if and only if it is satisfied for all 4 (-), which is so if
and only if

XY =v)> - [ho@)<Y @ —u)Y (t=v)>du =0 forall v
or, equivalently,
[ ho@)Ry v —u)du = Ryy(v)  forall v,

which can be expressed as
hov)® Ry(v) = Ryy(v) forall .
Fourier transforming this necessary and sufficient condition yields

Hof Wy () =Sxy(f) forall f,
which has the solution (13.280).

Note: the convolution (*) is expressed in a way that streamlines this derivation. To
illustrate this point, the alternative expression for this convolution is used in part b.
See also the note in b.

b) Since the time-averaged mean-squared value of an asymptotically mean stationary

random process is a valid norm,

X1l = <E {X%(1)}>!2,
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which induces the inner product
X, Y)=<E{X@®O)Y@®)}>,
then we can employ the orthogonality condition
X-Xp,X)=0 foral XeM
to solve the minimization problem
min<E {[X (¢)-X ()*}>,
where

@)= [h-u)Y @)du.

The orthogonality condition in this case becomes
0=<E{X(1)-X,IX®)}>
= <E([X @)= [ hott )Y @)du] [ Rt =v)Y v)dv }>

—c0

=<[h@-WEEXOY0)) = [holt —w)E Y @)Y (v)}duJdv>

—o0 —oo

=< [RWEXOY ¢ -w)} = [ ho@)E (¥t —2)Y (t —w)}dz Jdw>

(usingu =t —zandv =t —w)

= [hWEX OV -w))> = [ ho(2)<E (Y (¢ =2)Y (¢ —=w)}>dz ]aw,

which is satisfied for all X () if and only if it is satisfied for all A (-), which is so if
and only if

E{X@tY(@t-w)}>— Ih0(2)<E (Y@t -2)Y(@t—-w)}>dz =0 forall w.
This can be rewritten as

[ ho(z)<Ry>w—2)dz = <Ryy>(w) forall w

or, equivalently,
how)® <Ry>w) = <Ryy>(W).

Fourier transforming this necessary and sufficient condition yields
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Hy(f)<Sy>(f) = <Sxy>(f) forall f,

which has the solution (13.282).

Note: A technicality that is not mentioned in the book is that the unique solution to
the minimum-norm problem obtained by orthogonal projection is guaranteed to exist
only if the inner-product space is complete. Actually, the term Hilbert space is
reserved for only those infinite dimensional inner-product spaces that are complete.
Also, all finite dimensional linear spaces are complete. Completeness means that the
space contains all its limit points (it has no open boundaries or holes). Although the
space of all finite-mean-square random variables and the space of all finite-power
waveforms (e.g., sample paths of a stationary processes) are indeed complete, there
does not exist any linear space (let alone complete) of all jointly stationary finite-
mean-square processes, or any linear space of all jointly asymptotically mean
stationary processes, or any linear space of all jointly cyclostationary finite-mean-
square processes. The problem is that such joint vector properties apparently rule out
the existence of linear spaces of all such vectors. Nevertheless, given two processes
X(t) and Y(¢) that are jointly stationary, for example, one can indeed construct a
Hilbert space of all linear combinations of X (f) and Y (¢t —v) for all v. This is all
that is needed to apply orthogonal projection as done in the solution to this exercise.

13.25 The MSE in (13.99) can be expressed as .(using (2.45))
MSE = E{E{[X(t)-X()P*1®}},

and the corresponding orthogonality condition that minimizes MSE can be expressed
as

E{E{[X(@)-X @)X ()l®d}} =0

or, equivalently,
Jho(t—u)E{E{Y(u)Y(v)@}}du =E{E{X@)Y(v)I®}},

which -- for all v and ¢ -- is the corresponding design equation. Let us denote
Ry oW 2 E{Y (¢ +1)Y (¢)|D}
Ryy 0™ 2 E {X (1 +D)Y (¢)|D}.

Then the design equation becomes

[ ot =w)E {Ry jo(u —v)}du = E (Ryy 0t =)},

—o0

or, equivalently,

[ hoWIE {Ry ot —w)}dw = ho(D)® E {Ry 1oV} = E (Ryy16()}

—o0
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for all 1. Fourier transforming this equation and interchanging the order of the opera-
tions of expectation and Fourier transformation yields

H(f )E {Syo(f )} = E {Sxy10(f )}
which has the solution (13.283).

13.26 (i) Since we have the observation model
Y#)=S@)+N@),
where
S@)=W@e)-W@e—-T) and N(t)=WGN
are statistically independent, then we have the correlations
Ry (1) =Rg(1) and Ry(T) = Rg(T) + Nd(7),
where (using (6.13))
Rs)y=E{W(E+T) - W(E+1-DIW(@E) - W -1T)1}

= o[min{r +7T, ¢} —min{t +7, =T} —min{t +T—T, t} +min{t +7-T, t -T}]

{az(T -, ItlsT

0, otherwise

(cf. exercise 10.4). The corresponding spectral densities are given by

Sr(F) = [Rey@e i dn = [Rs(ve = <>c2[ii9%ﬁ—)]2
o SIN(fT) 12
=g — = Ng.
Sy(f)=a?[ nf I +n,
It follows from (13.112) that the noncausal Wiener filter is given by
of Sin(mfT) 42
Hyf) = Ssr (/) = “1 nf : .
Sy (f) of Sin(nfT) 42
I N
o] nf I'+ N

(ii)) The optimum filter (noncausal Wiener filter) for estimating X (¢) = S(f —t() is
similarly given by (13.112)

Sxy (F)

Sy ()’

Ho(f) =

where

Sxy(f ) - SSY(f )e —i 2nft, — SS (f )e —i2nfty
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Sy(f)=Ss(f) + No.
Since Sg(f ) < N, then we have the approximation

Ss(f)e—ﬂnfto 1

H ’ — ~_ —i2nft0,
o) ———Ss(f)+N0 NOSs(f)e

and its corresponding impulse-response is
hg(t) = —I—Rs(t—to) = —(ﬁ[T —lt—toll, lt—tol <T.
Ny Ny

Therefore, for ¢y > T, this optimum filter is approximated by a causal filter.

13.27 Let the observation be Y (¢) Ax (t); we want to estimate Z(¢) Ax (t +0) using

t
2(t) = Rot +0) = [ hot —u)Y (u)du

—o0

with the impulse response %(") of a causal filter that minimizes the MSE. From
Section 13.5 (with X (¢) there replaced by Z(¢)), we obtain the following design
equation for £((1):

[ hgowIRy(t—w)iw = Rpy(x) forall 720,
0

where
Ry (1) = Ry (1) = ae®1"
and
Ry (M =E (X +1+0)Y ()} = Ry(t+a) = ae P o >0.

Since T2 0 and o 2 0, then Ry (T+0) = ae —Boe BT and the design equation becomes
J ho(w Ye Pli-wlgy = e PoeBt  forall T2>0.
0

Furthermore, since Tl =1 for T = 0, it is easily seen that hg(w) = e PO§(w) satisfies
this design equation. Thus,

H(f)=eP

As an alternative approach, we can use the fact that the design equation can be
expressed as

[ h§ow IRyt —w)dw = Ryy (@) forall 20,
0
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where
hw) = eB% y(w)
Ry (1) = Ryy (1) = Ry (7).

The solution to this Wiener-Hopf equation is given by (13.196) with H ((f ) replaced
by Hj(f) and

Sy(i2nf) = Sy (i2nf)

Sxy (f) =Sx(f).

Thus,

; 1 Sx(f) 1 — .
B0 = Baanp o LS‘X (i2nf )]"] . ByG2mpr Sy a2err]
_ Sxa2nfr
[Sx (i2nf)T*

and, therefore,

Hof)=e P

13.28 Since (13.198) can be expressed as
Sy(f) = Sy(i2nf) = [Sy (i 2nf )" [Sy (i 2mf )],

where
[Sy G 2mf T =[Sy (i 2mf T = g2 LE 20
o+ i2nf
then from (13.185) we have
G(f) = — '1 = N2 oc+f'27tf’
[Sy GG 2mf )1 Y+ i2nf
which verifies (13.199). Substituting (13.197) into (13.198) yields
Sy(F) = — 20 %0, =N02(WN2+ o + (22nf)2
o? + (2nf) o’ + (2nf)
Therefore, 7% = 20 /N o+ a2
From (13.200), we obtain
20aNG"?  d_(o+i2nf) 20aN §1?
*“ly—izmf  y-ionf iznf=_a= Y+ o

o +\20a/Ng+a?
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Inverse Fourier transforming (13.202) yields
hot) =Ng%d e u(),

which implies that ¢ in (13.203) is given by

& = N6.1/2d+ _ L 20a 1 2a

No o +20a/Ng+ o> No 1+\2aioNg+1

The noncausal filter for ¢ = 0 is given by (13.150)
i) = ke P,
where
= L-———;—— and B2=2a0c/N0+0L2.
No \2a/oNy + 1
Hence, ¥ = f and
e
1+ kNo/a '

Thus, the optimum causal and noncausal filters have the same bandwidth but the gains
are different. For high SNR (a > Ny0), ¢ = 2k; that is, the causal filter has twice the
gain of the noncausal filter.

The performance of the noncausal filter is given in exercise 13.22 by (using (13.150))
MSE (noncausal) = N yh(0) = O N
\2a/oN o+ 1

and the performance of the causal filter is given by (13.204) (using the result of exer-
cise 13.28 for ¢ in (13.203))

2a

MSE ((causal) = N gh(0") = .
1 +2a/aNy+1

Thus,
MSE ((noncausal) 1
Rs©) e
MSE (causal) 2
Rs©®  p4~Te2n

where A = a/oN . For high SNR (A > 1), the noncausal MSE, is only half the causal
MSE , but as the SNR decreases, the noncausal MSE , approaches the causal MSE .
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13.30

13.31

13.32

Since Y(¢) = X (¢t) + N(¢) where X (¢) and N (¢) are statistically independent and N (¢)
is WGN, then Ryy (1) = Ry (1) and Ry (t) = Ry (T) + N (7). It follows that the design
equation (13.168) becomes

[ how)Ry T=w)dw + Noho(t) = Ry(®), 120 *)
0
and the performance formula (13.169) becomes
MSE o = Ry (0) — f ho(w )Ry (W )dw. (%)
0

Substituting (*) evaluated at T = 0" into (**) yields the desired result (13.204).

Note: T = 0" is used instead of T = 0, since T = 0~ yields /y(t) = 0 due to causality.

Let
1

Gl e—m———"—
¥ [Sy (i 2mf )

and
T(f)=G(e "

for any ry > 0. Then the impulse-response corresponding to T(f) is just a delayed
version of the causal stable impulse-response corresponding to G~'(f) and is,
therefore, causal and stable. Moreover, we have (see Figure 13.4)

Sy(fF) = IGIWSZU) = IG7IPS,(F) = Sy ().
Nevertheless, if we require Y () =Y (¢), then we have Z@)=Z( +1tg). Of course, by
using a nonlinear phase (versus f) in place of 2mfty in T(f), we can make Z(f)
differ from Z(¢) in a more substantial way.

Since Y (t) =S (t) + N(¢), where S(¢) and N(¢) are statistically independent and N (¢)
is WGN, then Sgy (f ) = Sg(f ) = Sy (f ) — Ny. It follows from (13.196) that

T )
Hyf) = — -1 - - Sl./(f +
[Sy@2nf)I" | [Sy(i2mf)]" | 4
S W B 1 R
[SyG2rf )" | [Sy=i2mf)l"  [Sy(-i2mf)I* | 4
3 1 o i Ny } . o
= ————|[§yG2rf )]t - ————| (since A/A" =A%
[SyG2mf)l" | [Sy@2rf)]” | +
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N
sp——1 - } (since [A™+B], = A*+B.)
[SyG2mf )l | [SyG2nmf)I” | 4
[SyG2mf)I* | SyG2nf) ) | .
B No'” Ny B
0 INg+ SsG2mf)I || No + SsG2nf) | | .
N6/2
=1- _ ince [1/[1+A17], = 1).
B e AT =1

13.33 Since

Ssy(F)=8s(f), Syy(F)=Sy(f) and Sy(f)=Ss(f)+Sy(),
then from (13.196) we obtain

1 Ss(F)
H{(f)=— —
= S aamr LSY (ionf )]J .
1 Sy(f)
Hof) = — -
2T ISpGmf T [[SYH onf )]*} "

and

S + S )
H(F) + Hof) 1 [s(f) N(f:l

[Sy (i 2mf )I* | [Sy (=i 2mf )]*

1 —
= ——|[Sy(i2 tlo=1.
T [Sy G 2nf 1] .

13.34 The linear predictor N(@li-1) of NG)=Y(@)—-X(), based on the observations
(Y (j)}§7, is simply the difference Y@li-1)—X(@ili —1) of the linear predictors of
Y (@) and X (i), each based on the same observations {Y(]')}(’;'1 (cf. exercise 13.37).
But since N (i) is statistically independent of {Y (i)}(‘;“l, then this predictor is zero:
N(@li-1)=0.Thus, Y(Gli -1) =X (@ li = 1).
As an alternative approach, we observe that, for the model (13.207) in which N(j) is
WGN, we have

E{Y@Y(@-/)}=E{X@YE-/)}, j=12,...,i

and, therefore, the difference of (13.210) and (13.211) satisfies

E(PGli-1)-XGli-DIYG—-j)} =0, j=1,2,...,i
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13.35

13.36

13.37

13.38

But since both Y(ili—1) and X(ili —1) are linear combinations of the linearly
independent variables {Y (i —j)} }=1, then the difference Y (i li —1) — ® (i li =1) must
be identically zero; otherwise the linear independence property would be violated.

Using (13.210), (13.212), and (13.214), we obtain for j <
Ry(i, ) =E{ZG)Z()} =E{[Y()-Y(li-DIYG)-Y({lj-DI}
2 -1 "
—E(IY@) - PGli-DIY()) =S U, DE(YG) - F(ili =Y (6)}

k=0

=0-0=0.

Since, R; (i, j) = Rz(j, i), then we also have R, (i, j) =0 for j >1i. Thus,

RzG. 1) =1 o, J#i,

which is the desired result (13.213).

From (13.220), we have
k()R;(i,i)=Ryz(i, i),
or, equivalently,
E{IX() - k(@)Z@IZG)} =0,

which implies that the projection k(i)Z(i) of X (i) onto Z(i) is an orthogonal
projection.

Let Y be a subspace of the space containing the vectors W and W, and let W, and
W , be the orthogonal projections of W, and W, onto Y. Then

W, -W,W)=0 WeY
W,-W, W)=0 WEeY.
It follows that
€Wy + caWy = [e W +e Wol, W) = (c|[W =W ]+ c)[Wy=-W,l, W)
=c /(W -Wy, W)+ cy(Wy=W,, W)=0, WEeY.

Therefore, c;W; + ¢, W, is the orthogonal projection of ¢ ;W + c¢,W, onto Y.

From the orthogonality condition,

Ch. 13: Minimum-Mean-Squared-Error Estimation



The Random Processes Tutor e 265

E{[W(i+1)—W(i+1Ii)]Z(k)} =0, k=0,1,...,i
for the predictor W(i +11i) based on the innovations {Z (k)}, we have

E{W@+1Z(k)} =Ryz(+1,k)=E (W(i +11i)Z (k))

= 3 he(G, DEZGZE)) = 3 halis Ry GK, j) K =0,1,. .., 1,
j=0 j=0

which is the desired design equation (13.228). Substituting (13.213) into (13.228)
yields

i
> Ryk, K)8_ihe (i, j) =Rz (k, k)he (i, k) = Ryyz (i +1,k), k=0,1,...,1,
j=1

which has the solution
he(i, k) = R7\(k, k)Ryz (i +1, k).
Therefore, (13.227) yields the state prediction
WG +11i) = Zl) hi (i, )Z() = i R7'G, JRwz G +1, HZ (),
j=0 j=0
which is the desired result (13.229).

13.39 From (13.223), we obtain
Ryz (@ +1, j) = E{W(@ +1)Z()} = AOE{WOHZ()} +bOE{VE)Z())
= AG@)RwzG, ),  J =i,
which is the desired equation (13.276). Substituting (13.276) into (13.229) yields the
recursion (13.230):
Wi +11i) = E R, Rwz (G +1, HZG) + R, D)Ryz (G +1, )Z ()

j=0

i-1
=AY R7'G, Rwz G, NZG) + kG +1, HZ()
j=0

= A(i)W(i li-1)+ k@ +1, )Z3),
where k(i + 1, i) is defined by (13.231).
13.40 Substituting (13.276) into (13.231) yields (using definition (13.237))

k(i +1,1) = Rz"l(i, DAG)Rwz (G, 1) = AG)KGE),
which is (13.234) as desired.
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It follows from (13.276), (13.232)-(13.233), and (13.227) that
Ry G +1, 1) = AG)Ryz (i, 1) = AGE ([WG li —1) + Wi i — DIZ ()}

- i-1
=A@E{WGli-DZ3GE)}+AG) Y, b« =1, HE{Z(G)Z()}
j=0

= AG)E (Wi li = D[cG)W@ili —1) + N@)IT} + 0
= AG)[Rg (i li =1’ @) + E{W( i = DN ()}]
= ARy li =17 () + E {W@N ()} - E (WG li —1N ()

= ARG li ~1)eT () +0 -0,

and it follows from (13.232b) that
Ry(i, i) = E{[cG)W( i —=1) + N()I[c()WG li —=1) + N@)]T}
= ¢(i )Ry (i li =1)e’ () + Ny,
Therefore, (13.231) can be expressed as
A()Rg( li =1)eT ()
e )R (i li =T (i) + Ny

kG +11i) = AGRSL(G, )Ry (i, i) =

which, together with (13.234), yields the desired result (13.235a).

13.41 From (13.236), we obtain
WG li 1) = W@ li) = kG)Z ()
which, upon substitution into (13.230), yields
WG +11i) = AGWG i) — AGKGE)Z (@) + k@ +1, i)Z(@)
= AG)W( i) (using (13.234)),
which is the desired relation (13.238).

13.42 Substituting (13.232b) into (13.236) and subtracting W(i) from both sides yields
WG li) = WG li = 1) + k@)e(@ )W li = 1) + N @ )KG).
Therefore, definition (13.277) can be expressed as
Wi li) AWG) - Wi li) = W(i) — WG li = 1) — k@)e )W li —1) - N ()k()
= [T — k(i )e(i)IW(@ i = 1) — N (0 k(@),
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which is (13.286), as desired. Using this equation, the correlation matrix of W( li) can
be expressed as

Ry (i i) = E{W(i )W (i i)}
= [I = k(i )e(@)IE (Wi li = DW (i li = DI - kG)e()]T + k@)K ()E (NX(i))
(since E {W(i li —1)N (i)} = 0)
= [I - k(i)e() IRy If = DI = k@)e@)]T + Nok()K? (i),
which is (13.279), as desired. Substituting (13.235a) into (13.279) yields
Ry, li = el ()e(@)
(i )Ry (i li =1)c" (i) + Ny
Ry G li =Dl G)ei)  r Ry (i li = 1)el ()eREG i = 1)
(i )Ry (i li —1)c’ (i) + Ny Mo [e( Ry (G li = 1Dl (i) + Nol?
Ry (i li = 1)e? (i )e( Ry i li = 1)
No+ e Ry (i li = 1)e” (@)

Ry (i li)=[I- IR G li - 1)

=Rg(li-1)-

which is (13.280), as desired. Substituting (13.238) into (13.233) and then substituting
(13.223) into the result yields

Wili-1)=W(@) - AG-DW(@ - 11i - 1)

=AG-1)W@G -1)+ b =1V (i -1) - AG -1D)W(@ —1li = 1)
=AG-DW(@E -1li =1) + b -V (i -1),
from which we obtain the correlation matrix of W(i li —1):
Ry li —=1) = E{W(li —)W (i li = 1)}

=A@l —DE{W(i -11i —-1)WT (i =11i =1DJAT (G —1) + b — DT (¢ = 1DE {VZ(i — 1)}
(since E (W(i —1li =1)V (i —=1)} = 0)

= A(i — DRy (i —11i =DAT (@ =1) + b —1bT (i - 1),

which is the desired result (13.282). Substituting (13.235a) into (13.280) yields the
alternative form of the recursion:

Ry (i 1i) = Ry li = 1) — K(@)e(@ )Ry (0 li = 1) = [T = k(@)e(@)IRg (@ li —1).

13.43 a) From (13.248), we obtain
Nok @)

Ry(ili—1)= ———.
wlli=h ¢ —c% (@)
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b)

c)

Substituting Ry, (i [i — 1) and (13.248) into (13.250) yields
Nok(i) a®’N
¢ —-c%@G) ¢

or, equivalently,

QrG-1)+b% i=2

a%k (@i —1) + b2%cIN,
1+ (bc)YNg+ a’ck(i—1)

i 22,

k@)
which is (13.252), as desired.
Substituting the initial conditions Ry, (0) = 0 and W (010) = 0 into (13.251) yields
Ry (110) = a®[Ry (0) — W3(010)] + b% = b2
Substituting this result into (13.248) yields
Ry (110) _ L
No+c®Ry(110)  Ng+ (cb)?’

k(1) =

which is the desired result (13.253).
Substituting (13.236) into (13.238) with i replaced by i —1 yields

W@ili-D=aW(@-1li-)=aW( -1li =2) + ak (i —=1)Z({ —1).

By comparing this difference equation with (13.245), we see that these two
difference equations are identical except for a factor of a¢ by which the input to the
predictor is scaled. Therefore, the impulse response functions for these two systems
are related by g (i) = ah (i), and A (i) is solved for in exercise 13.5.
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